Advertisements
Advertisements
Question
Find the values of a and below `[(a + 3, b^2 + 2),(0, -6)] = [(2a + 1, 3b),(0, b^2 - 5b)]`
Solution
`[(a + 3, b^2 + 2),(0, -6)] = [(2a + 1, 3b),(0, b^2 - 5b)]`
comparing the corresponding elements
a + 3 = 2a + 1
⇒ 2a – a =3 – 1
⇒ a = 2
b2 + 2 = 3b
⇒ b2 – 3b + 2 = 0
⇒ b2 – b – 2b + 2 = 0
⇒ b (b – 1) – 2 (b – 1) = 0
⇒ (b – 1) (b – 2) = 0.
Either b – 1 = 0,
then b = 1
or
b – 2 = 0,
then b = 2
Hence a = 2, b = 2 or 1.
APPEARS IN
RELATED QUESTIONS
if A = `[(2,3),(5,7)]`, B = `[(0,4),(-1,7)]` and c = `[(1,0),(-1, 4)]`, find AC + B2 – 10C.
Evaluate:
`3[(5, -2)]`
Given `[(2, 1),(-3, 4)] x = [(7),(6)]` Write the matrix x.
Find x and y, if : `[(x, 3x),(y, 4y)][(2),(1)] = [(5),(12)]`.
Given A = `[(2, -1),(2, 0)]`, B = `[(-3, 2),(4, 0)]` and C = `[(1, 0),(0, 2)]`, find the matrix X such that : A + X = 2B + C.
Find the positive integers p and q such that :
`[p q][p/q]= [25]`
If A = `|(1215),(1117)|` and B = `|(2,7),(4,9)|` , find : A + B
Find x and y if:
`((-3, 2),(0 , 5)) ((x),(y)) = ((-5),(y))`
If A = `[(1 , 0),(-1 ,7)]` and I = `[(1 , 0),(0 ,1)]`, then find k so that A2 = 8A + kI.
Choose the correct answer from the given four options :
If `[(x + 2y, -y),(3x, 7)] = [(-4, 3),(6, 4)]` then the values of x and y are