Advertisements
Advertisements
Question
Given `[(2, 1),(-3, 4)] x = [(7),(6)]` Write the matrix x.
Solution
Let `x = [(x),(y)]`
∴ `[(2, 1),(-3, 4)] xx [(x),(y)] = [(7),(6)]`
⇒ `[(2x + y),(-3x + 4y)] = [(7),(6)]`
⇒ 2x + y = 7 ...(1)
-3x + 4y = 6 ...(2)
Multiplying by 4 in equation (1) and solving with equation (2)
8x + 4y = 28
-3x + 4y = 6
(+) (-) (-)
11x = 22
x = 2
Putting the value of x in equation (1), we get
∴ 2 × 2 + y = 7
y = 7 - 4 = 3
∴ The matrix x = `[(x), (y)] = [(2),(3)]`
APPEARS IN
RELATED QUESTIONS
Evaluate:
`[(cos 45°, sin 30°),(sqrt(2) cos 0°, sin 0°)] [(sin 45°, cos 90°),(sin 90°, cot 45°)]`
Given A = `[(2, -1),(2, 0)]`, B = `[(-3, 2),(4, 0)]` and C = `[(1, 0),(0, 2)]`, find the matrix X such that : A + X = 2B + C.
Find the positive integers p and q such that :
`[p q][p/q]= [25]`
Given matrix A = `[(4sin30^@,cos0^@), (cos0^@,4sin30^@)] and B = [(4), (5)]` If AX = B.
Write the order of matrix X.
If `[(x + 3, 4),(y - 4, x + y)] = [(5, 4),(3, 9)]`,find values of x and y
Find the values of x, y, a and b if `[(x - 2, y),(a + 2b, 3a - b)] = [(3, 1),(5, 1)]`
If A = `[(2 , -1),(-4, 5)]` and B = [0 -3] find the matrix C such that CA = B
If B = `[(-4, 2),(5, -1)] and "C" = [(17, -1),(47, -13)]` find the matrix A such that AB = C
Choose the correct answer from the given four options :
If A + B = `[(1, 0),(1, 1)]` and A – 2B = `[(-1, 1),(0, -1)]` then A is equal to
If A = `[(sec60°, cos90°),(-3tan45°, sin90°)] and "B" = [(0, cos45°),(-2, 3sin90°)]` Find : 2A – 3B