Advertisements
Advertisements
Question
Find the values of x, y, a and b if `[(x - 2, y),(a + 2b, 3a - b)] = [(3, 1),(5, 1)]`
Solution
Comparing corresponding elements
x – 2 = 3, y = 1
x = 3 + 2 = 5
a + 2b = 5 ……(i)
3a – b = 1 ……..(ii)
Multiplying (i) by 1 and (ii) by 2
a + 2b = 5,
6a – 2b = 2
Adding, we get,
7a = 7
⇒ a = 1
Substituting the value of a in ...(i)
1 + 2b = 5
⇒ 2b = 5 – 1 = 4
⇒ b = 2
Hence x = 5, y = 1, a = 1, b = 2.
APPEARS IN
RELATED QUESTIONS
if `A [(3,7),(2,4)], B = [(0,2),(5,3)]` and `C = [(1,-5),(-4,6)]` Find AB - 5C
Evaluate:
`7[(-1, 2),(0, 1)]`
Given A = `[(2, -1),(2, 0)]`, B = `[(-3, 2),(4, 0)]` and C = `[(1, 0),(0, 2)]`, find the matrix X such that : A + X = 2B + C.
If P = `|(2 , 9),(5 , 7)|` and Q = `|(7 , 3),(4 , 1)|` , find 2P + 3Q
If P = `|(2,9),(5 , 7)|` and Q = `|(7 , 3),(4 , 1)|` find 3P - 2Q
If `|(3"a" + 2"b" , 2"a" - "b"),(4"p" - 3"q" , 2"p" + "q")|` = `|(12 , 1),(16 , 8)|` , find the values of a , b , p and q.
Given matrix A = `[(4sin30^@,cos0^@), (cos0^@,4sin30^@)] and B = [(4), (5)]` If AX = B.
Find the matrix 'X'
Given matrix B =`[(1,1), (8,3)]` Find the matrix X if, X = B2 - 4B. Hence, solve for a and b given X`[(a), (b)] = [(5), (50)]`
Find x and y if
`[( x , 3x),(y , 4y)][(2),(1)] = [(5),(12)]`.
If `"A" = [(a , b),(c , d)] and "I" = [(1 , 0),(0 , 1)]` show that A2 - (a + d) A = (bc - ad) I.