Advertisements
Advertisements
Question
Given matrix B =`[(1,1), (8,3)]` Find the matrix X if, X = B2 - 4B. Hence, solve for a and b given X`[(a), (b)] = [(5), (50)]`
Solution
`B^2 = B xx B = [(1,1), (8,3)][(1,1), (8,3)] = [(1xx1+1xx8,1xx1+1xx3), (8xx1+3xx8,8xx1+3xx3)] = [(9,4), (32,17)]`
4B = 4`[(1,1), (8,3)] = [(4,4), (32,12)]`
Given : `X = B^2 - 4B`
`=> X = [(9,4), (32,17)] - [(4,4), (32,12)] = [(5,0), (0,5)]`
To find: a and b
X`[(a), (b)] = [(5), (50)]` ........given
`=> [(5,0), (0,5)][(a), (b)] = [(5), (50)]`
`=> [(5a), (5b)] = [(5), (50)]`
`=> 5[(a), (b)] = 5[(1), (10)]`
`=> a = 1 and b = 10
APPEARS IN
RELATED QUESTIONS
If A = `[(2, 1, -1),(0, 1, -2)]`, Find At . A where At is the transpose of matrix A.
Given `[(2, 1),(-3, 4)] x = [(7),(6)]` Write the matrix x.
If M = `|(8,3),(9,7),(4,3)|` and N = `|(4,7),(5,3),(10 , 1)|` find M+N
Find X and Y , if `|(1,2),(2 , -3)| |(x),(y)| = |(-1) , (12)|`
If A = `[(3, x),(0, 1)]` and B = `[(9, 16),(0, -y)]`, find x and y when A2 = B.
Let A = `[(2, 1),(0, -2)]`, B = `[(4, 1),(-3, -2)]` and C = `[(-3, 2),(-1, 4)]`. Find A2 + AC – 5B.
If A = `[(3 , 1),(-1 , 2)]` and I = `[(1 , 0),(0, 1)]`
find A2 - 5A + 7 I.
Find the value of x if `[(3x + y, -y),(2y - x, 3)] = [(1, 2),(-5, 3)]`
If A = `[(2, -1),(-4, 5)] and "B" = [(-3),(2)]` find the matrix C such that AC = B
Choose the correct answer from the given four options :
If A + B = `[(1, 0),(1, 1)]` and A – 2B = `[(-1, 1),(0, -1)]` then A is equal to