Advertisements
Advertisements
प्रश्न
Given matrix B =`[(1,1), (8,3)]` Find the matrix X if, X = B2 - 4B. Hence, solve for a and b given X`[(a), (b)] = [(5), (50)]`
उत्तर
`B^2 = B xx B = [(1,1), (8,3)][(1,1), (8,3)] = [(1xx1+1xx8,1xx1+1xx3), (8xx1+3xx8,8xx1+3xx3)] = [(9,4), (32,17)]`
4B = 4`[(1,1), (8,3)] = [(4,4), (32,12)]`
Given : `X = B^2 - 4B`
`=> X = [(9,4), (32,17)] - [(4,4), (32,12)] = [(5,0), (0,5)]`
To find: a and b
X`[(a), (b)] = [(5), (50)]` ........given
`=> [(5,0), (0,5)][(a), (b)] = [(5), (50)]`
`=> [(5a), (5b)] = [(5), (50)]`
`=> 5[(a), (b)] = 5[(1), (10)]`
`=> a = 1 and b = 10
APPEARS IN
संबंधित प्रश्न
Given A = `[(2, 0),(-1, 7)]` and I = `[(1, 0),(0, 1)]` and A2 = 9A + ml. Find m.
if `A = [(3,x),(0,1)], B = [(9,16),(0,-y)]`, Find x and y where `A^2 = B`
Evaluate:
`3[(5, -2)]`
Find the value of x, given that A2 = B,
A = `[(2, 12),(0, 1)]` and B = `[(4, x),(0, 1)]`
If A = `|(17 , 5 , 19),(11 , 8 , 13)|` and B =`|(9,3,7),(1,6,5)|` , find 2A - 3B
If M = `|(8,3),(9,7),(4,3)|` and N = `|(4,7),(5,3),(10 , 1)|` find M+N
Given that A = `[(3, 0),(0, 4)]` and B = `[(a, b),(0, c)]` and that AB = A + B, find the values of a, b and c.
Find x and y, if `((x,3x),(y, 4y))((2),(1)) = ((5),(12))`.
If A = `[(1 , 0),(-1 ,7)]` and I = `[(1 , 0),(0 ,1)]`, then find k so that A2 = 8A + kI.
If A = `[(sec60°, cos90°),(-3tan45°, sin90°)] and "B" = [(0, cos45°),(-2, 3sin90°)]` Find : A2