Advertisements
Advertisements
प्रश्न
If A = `[(sec60°, cos90°),(-3tan45°, sin90°)] and "B" = [(0, cos45°),(-2, 3sin90°)]` Find : A2
उत्तर
Given
A = `[(sec60°, cos90°),(-3tan45°, sin90°)]`
and
B = `[(0, cos45°),(-2, 3sin90°)]`
A = `[(sec60° , cos90°),(-3tan45°, sin90°)] = [(2, 0),(3, 1)]` ...(∵ sec60° = 2, cos90° = 0, tan45° = 1, sin90° = 1)
B = `[(0, cos45°),(-2, 3sin90°)] = [(0, 1),(-2, 3)]` ...(∵ cot45° = 1)
A2 = A x A = `[(2, 0),(-3, 1)][(2, 0),(-3, 1)]`
= `[(4 + 0, 0 + 0),(-6 - 3, 0 + 1)]`
= `[(4, 0),(-9, 1)]`.
APPEARS IN
संबंधित प्रश्न
If A = `[(1, 3),(3, 4)]`, B = `[(-2, 1),(-3, 2)]` and A2 – 5B2 = 5C. Find matrix C where C is a 2 by 2 matrix.
If A = `[(2, 1),(1, 3)]` and B = `[(3),(-11)]`, find the matrix X such that AX = B.
If A = `[(4, 2),(1,1)]`, find (A – 2I)(A – 3I).
If A = `[(0, -1),(4, -3)]`, B = `[(-5),(6)]` and 3A × M = 2B; find matrix M.
Find the positive integers p and q such that :
`[p q][p/q]= [25]`
If A = `[(3, x),(0, 1)]` and B = `[(9, 16),(0, -y)]`, find x and y when A2 = B.
Let A = `[(2, 1),(0, -2)]`, B = `[(4, 1),(-3, -2)]` and C = `[(-3, 2),(-1, 4)]`. Find A2 + AC – 5B.
Given A = `[(2,0), (-1,7)] and 1 = [(1,0), (0,1)]` and A2 = 9A +mI. Find m
Given matrix B =`[(1,1), (8,3)]` Find the matrix X if, X = B2 - 4B. Hence, solve for a and b given X`[(a), (b)] = [(5), (50)]`
Choose the correct answer from the given four options :
If `[(x + 2y, -y),(3x, 7)] = [(-4, 3),(6, 4)]` then the values of x and y are