Advertisements
Advertisements
प्रश्न
If A = `[(2, 1),(1, 3)]` and B = `[(3),(-11)]`, find the matrix X such that AX = B.
उत्तर
Let the order of the matrix X be a × b
AX = B
`[(2, 1),(1, 3)]_(2 xx 2) xx X_(a xx b) = [(3),(-11)]_(2 xx 1)`
Clearly, the order of the matrix X is 2 × 1.
Let `X = [(x),(y)]`
`[(2, 1),(1, 3)] xx [(x),(y)] = [(3),(-11)]`
`[(2x + y),(x + 3y)] = [(3),(-11)]`
Comparing the two matrices, we get,
2x + y = 3 ...(1)
x + 3y = –11 ...(2)
Multiplying (1) with 3, we get,
6x + 3y = 9 ...(3)
Subtracting (2) from (3), we get,
5x = 20
x = 4
From (1), we have
y = 3 – 2x
= 3 – 8
= –5
∴ `X = [(4),(-5)]`
APPEARS IN
संबंधित प्रश्न
Given `[(2, 1),(-3,4)]` . X = `[(7),(6)]`. Write:
- the order of the matrix X.
- the matrix X.
If `[(a, 3),(4, 1)] + [(2, b),(1, -2)] - [(1, 1),(-2, c)] = [(5, 0),(7, 3)]`, find the values of a, b and c.
If A = `[(3, a),(-4, 8)]`, B = `[(c, 4),(-3, 0)]`, C = `[(-1, 4),(3, b)]` and 3A – 2C = 6B, find the values of a, b and c.
Given matrix A = `[(4sin30^@,cos0^@), (cos0^@,4sin30^@)] and B = [(4), (5)]` If AX = B.
Find the matrix 'X'
Given matrix B =`[(1,1), (8,3)]` Find the matrix X if, X = B2 - 4B. Hence, solve for a and b given X`[(a), (b)] = [(5), (50)]`
Let `"A" = [(4 , -2),(6 , -3)], "B" = [(0 , 2),(1 , -1)] and "C" = [(-2 , 3),(1 , -1)]`. Find A2 - A + BC
Find the values of x and y if : `[(2x + y),(3x - 2y)] = [(5),(4)]`
If A = `[(3, -4),(-1, 2)]`, find matrix B such that BA = I,where I is unity matrix of order 2
If B = `[(-4, 2),(5, -1)] and "C" = [(17, -1),(47, -13)]` find the matrix A such that AB = C
If A = `[(3, 3),(p, q)]` and A2 = 0 find p and q