Advertisements
Advertisements
प्रश्न
If A = `[(3, a),(-4, 8)]`, B = `[(c, 4),(-3, 0)]`, C = `[(-1, 4),(3, b)]` and 3A – 2C = 6B, find the values of a, b and c.
उत्तर
Given: A = `[(3, a),(-4, 8)]`, B = `[(c, 4),(-3, 0)]`, C = `[(-1, 4),(3, b)]`
∴ 3A = `3[(3, a),(-4, 8)] = [(9, 3a),(-12, 24)]`
6B = `6[(c, 4),(-3, 0)] = [(6c, 24),(-18, 0)]`
2C = `2[(-1, 4),(3, b)] = [(-2, 8),(6, 2b)]`
∵ 3A – 2C = 6B
∴ `[(9, 3a),(-12, 24)] - [(-2, 8),(6, 2b)] = [(6c, 24),(-18, 0)]`
`\implies [(9 - (-2), 3a - 8),(-12 - 6, 24 - 2b)] = [(6c, 24),(-18, 0)]`
`\implies [(11, 3a - 8),(-18, 24 - 2b)] = [(6c, 24),(-18, 0)]`
Comparing the corresponding terms, we have
3a – 8 = 24
`\implies` 3a = 24 + 8
`\implies` 3a = 32
`\implies a = 32/3 = 10 2/3`
And 24 – 2b = 0
`\implies` 2b = 24
`\implies` b = `24/2` = 12
And 6c = 11
`\implies c = 11/6 = 1 5/6`
Hence a = `10 2/3`, b = 12, c = `1 5/6`
APPEARS IN
संबंधित प्रश्न
If A = `[(2, 1),(1, 3)]` and B = `[(3),(-11)]`, find the matrix X such that AX = B.
Let `A = [(1, 0),(2, 1)], B = [(2, 3),(-1, 0)]`. Find `A^2 + AB + B^2`
Solve for x and y `[(-2,0), (3,1)][(-1), (2x)] +3[(-2), (1)] =2[(y), (3)]`
Given matrix B =`[(1,1), (8,3)]` Find the matrix X if, X = B2 - 4B. Hence, solve for a and b given X`[(a), (b)] = [(5), (50)]`
Find X and Y, if
`[(2x, x),(y , 3y)][(3),(2)] = [(16),(9)]`
If `"A" = [(3 , 1),(2 , 1)] and "B" = [(1 , -2),(5 , 3)]`, then show that (A - B)2 ≠ A2 - 2AB + B2.
If `[(x + 3, 4),(y - 4, x + y)] = [(5, 4),(3, 9)]`,find values of x and y
Find the values of x, y and z if `[(x + 2, 6),(3, 5z)] = [(-5, y^2 + y),(3, 20)]`
If A = `[(2, -1),(-4, 5)] and "B" = [(-3),(2)]` find the matrix C such that AC = B
Find the values of a and below `[(a + 3, b^2 + 2),(0, -6)] = [(2a + 1, 3b),(0, b^2 - 5b)]`