Advertisements
Advertisements
प्रश्न
If `"A" = [(3 , 1),(2 , 1)] and "B" = [(1 , -2),(5 , 3)]`, then show that (A - B)2 ≠ A2 - 2AB + B2.
उत्तर
A - B = `[(3 , 1),(2 , 1)] - [(1 , -2),(5 , 3)]`
= `[(3 - 1, 1 + 2),(2 - 5 , 1 - 3)] = [(2 , 3),(-3 , -2)]`
(A - B)2 = (A - B)(A - B)
⇒ (A - B)2 = `[(2 , 3),(-3 , -2)][(2 , 3),(-3 , -2)]`
= `[(4 - 9 , 6 - 6),(-6 + 6 , -9 + 4)]`
= `[(-5 , 0),(0 , -5)]`
and A2 = `[(3 , 1),(2 , 1)][(3 , 1),(2 , 1)]`
= `[(9 + 2 , 3 + 1),(6 + 2 , 2 + 1)] = [(11 , 4),(8 , 3)]`
and B2 = `[(1 , -2),(5 , 3)][(1 , -2),(5 , 3)]`
= `[(1 - 10 , -2 -6),(5 + 15 , -10 + 9)]`
= `[(-9 , -8),(20 , -1)]`
and AB = `[(3 , 1),(2 , 1)][(1 , -2),(5 , 3)]`
= `[(3 + 5 , -6 + 3),(2 + 5 , -4 + 3)] = [(8 , -3),(7 , -1)]`
Now A2 - 2AB + B2
= `[(11 , 4),(8 , 3)] -2 [(8 , -3),(7 , -1)] + [(-9 , -8),(20 , -1)]`
= `[(11 , 4),(8 , 3)] - [(16 , -6),(14 , -2)] + [(-9 , -8),(20 , -1)]`
= `[(11 - 6 - 9 , 4 + 6 - 8),(8 - 14 + 20 , 3 + 2 - 1)]`
= `[(-14 , 2),(14 , 4)]`
Hence, from above calculations, we get
(A - B)2 ≠ A2 - 2AB + B2.
APPEARS IN
संबंधित प्रश्न
if A = `[(2,3),(5,7)]`, B = `[(0,4),(-1,7)]` and c = `[(1,0),(-1, 4)]`, find AC + B2 – 10C.
If A = `|(1215),(1117)|` and B = `|(2,7),(4,9)|` find A - 2B
If A =`|(1, 9 , 4),(5 , 0 , 3)|` , find negative A
Given A = `[(2,0), (-1,7)] and 1 = [(1,0), (0,1)]` and A2 = 9A +mI. Find m
If `[(x + 3, 4),(y - 4, x + y)] = [(5, 4),(3, 9)]`,find values of x and y
Find the values of a, b, c and d if `[(a + b, 3),(5 + c, ab)] = [(6, d),(-1, 8)]`
Choose the correct answer from the given four options :
If `[(x + 3, 4),(y - 4, x + y)] = [(5, 4),(3, 9)]` then the values of x and y are
Choose the correct answer from the given four options :
If `[(x - 2y, 5),(3, y)] = [(6, 5),(3, -2)]` then the value of x is
Choose the correct answer from the given four options :
If A + B = `[(1, 0),(1, 1)]` and A – 2B = `[(-1, 1),(0, -1)]` then A is equal to
Find a, b, c and d if `3[(a, b),(c, d)] = [(4, a + b),(c + d, 3)] + [(a, 6),(-1, 2d)]`