Advertisements
Advertisements
प्रश्न
If `"A" = [(1 , 2),(-2 , 3)], "B" = [(2 , 1),(2 , 3)] "C" = [(-3 , 1),(2 , 0)]` verify that
A(B + C) = AB + AC.
उत्तर
B + C = `[(2 , 1),(2 , 3)] + [(-3 , 1),(2 , 0)]`
= `[(2 - 3 , 1 + 1),(2 + 2 , 3 + 0)] = [(-1 , 2),(4 , 3)]`
A(B+ C) = `[(1 , 2),(-2 , 3)][(-1 , 2),(4 , 3)]`
= `[(-1 + 8 , 2 + 6),(2 + 12 , -4 + 9)] = [(7 , 8),(14 , 5)]`
Now AB = `[(6 , 7),(2 , 7)]`
AC = `[(1 , 2),(-2 , 3)][(-3 , 1),(2 , 0)]`
= `[(-3 + 4 , 1 + 0),(6 + 6 , -2 + 0)] = [( 1 , 1),(12 , -2)]`
AB + AC = `[(6 , 7),(2 , 7)] + [(1 , 1),(12 , -2)]`
= `[(6 + 1 , 7 + 1),(2 + 12 , 7 - 2)]`
AB + AC = `[(7 , 8),(14 , 5)]`
Hence A(B + C) = AB + AC.
APPEARS IN
संबंधित प्रश्न
Given matrix A `[(4 sin 30°, cos 0°),(cos 0°, 4 sin 30°)]` and B = `[(4),(5)]`. If AX = B.
- Write the order of matrix X.
- Find the matrix ‘X’.
Given `[(2, 1),(-3,4)]` . X = `[(7),(6)]`. Write:
- the order of the matrix X.
- the matrix X.
Given `[(2, 1),(-3, 4)] x = [(7),(6)]` Write the matrix x.
If `A = [(2, 5),(1, 3)]`, `B = [(4, -2),(-1, 3)]` and I is Identity matrix of same order and `A^t` is the transpose of matrix A find `A^t.B + BI`
If A =`|(1, 9 , 4),(5 , 0 , 3)|` , find negative A
If P = (8 , 5),(7 , 2) , find Pt
Evaluate the following :
`|(2 , -5),(0 , -3)| |(1 , -1),(3 , 2)|`
Solve for x and y `[(-2,0), (3,1)][(-1), (2x)] +3[(-2), (1)] =2[(y), (3)]`
Find x, y if `[(-2, 0),(3, 1)] [(-1),(2x)] +3[(-2),(1)] = 2[(y),(3)]`.
Choose the correct answer from the given four options :
If `[(x + 3, 4),(y - 4, x + y)] = [(5, 4),(3, 9)]` then the values of x and y are