Advertisements
Advertisements
प्रश्न
If `"A" = [(1 , 2),(-2 , 3)], "B" = [(2 , 1),(2 , 3)] "C" = [(-3 , 1),(2 , 0)]` verify that
A(B + C) = AB + AC.
उत्तर
B + C = `[(2 , 1),(2 , 3)] + [(-3 , 1),(2 , 0)]`
= `[(2 - 3 , 1 + 1),(2 + 2 , 3 + 0)] = [(-1 , 2),(4 , 3)]`
A(B+ C) = `[(1 , 2),(-2 , 3)][(-1 , 2),(4 , 3)]`
= `[(-1 + 8 , 2 + 6),(2 + 12 , -4 + 9)] = [(7 , 8),(14 , 5)]`
Now AB = `[(6 , 7),(2 , 7)]`
AC = `[(1 , 2),(-2 , 3)][(-3 , 1),(2 , 0)]`
= `[(-3 + 4 , 1 + 0),(6 + 6 , -2 + 0)] = [( 1 , 1),(12 , -2)]`
AB + AC = `[(6 , 7),(2 , 7)] + [(1 , 1),(12 , -2)]`
= `[(6 + 1 , 7 + 1),(2 + 12 , 7 - 2)]`
AB + AC = `[(7 , 8),(14 , 5)]`
Hence A(B + C) = AB + AC.
APPEARS IN
संबंधित प्रश्न
if A = `[(2,3),(5,7)]`, B = `[(0,4),(-1,7)]` and c = `[(1,0),(-1, 4)]`, find AC + B2 – 10C.
Find x and y if `[(x,3x),(y, 4y)] = [(5),(12)]`
Find the value of x, given that A2 = B,
A = `[(2, 12),(0, 1)]` and B = `[(4, x),(0, 1)]`
If A = `[(3, a),(-4, 8)]`, B = `[(c, 4),(-3, 0)]`, C = `[(-1, 4),(3, b)]` and 3A – 2C = 6B, find the values of a, b and c.
Given A = `[(p , 0),(0, 2)], "B" = [(0 , -q), (1, 0)], "C" = [(2, -2),(2, 2)]` and BA = C2.
Find the values of p and q.
Find x and y, if `((x,3x),(y, 4y))((2),(1)) = ((5),(12))`.
If `"A" = [(3 , 1),(2 , 1)] and "B" = [(1 , -2),(5 , 3)]`, then show that (A - B)2 ≠ A2 - 2AB + B2.
Find the values of x and y if : `[(2x + y),(3x - 2y)] = [(5),(4)]`
If A = `[(3, 3),(p, q)]` and A2 = 0 find p and q
If A = `[(3/5, 2/5),(x, y)]` and A2 = I, find x,y