Advertisements
Advertisements
प्रश्न
If A = `[(3, 3),(p, q)]` and A2 = 0 find p and q
उत्तर
Given
A = `[(3, 3),(p, q)]`
A2 = A x A = `[(3, 3),(p, q)][(3, 3),(p, q)]`
= `[(9 + 3p, 9 + 3q),(3p + pq, 3p + q^2)]`
But A2 = 0
∴`[(9 + 3p, 9 + 3q),(3p + pq, 3p + q^2)] = [(0, 0),(0, 0)]`
Comparing the corresponding elements
9 + 3p = 0
⇒ 3p = –9
⇒ p = –3
9 + 3q = 0
⇒ 3q = –9
⇒ q = –3
Hence p = –3, q = –3.
APPEARS IN
संबंधित प्रश्न
if `A = [(3,x),(0,1)], B = [(9,16),(0,-y)]`, Find x and y where `A^2 = B`
If `[(a, 3),(4, 1)] + [(2, b),(1, -2)] - [(1, 1),(-2, c)] = [(5, 0),(7, 3)]`, find the values of a, b and c.
If A = `[(1, 2),(2, 1)]` and B = `[(2, 1),(1, 2)]`; find A(BA)
Let A = `[(4, -2),(6, -3)]`, B = `[(0, 2),(1, -1)]` and C = `[(-2, 3),(1, -1)]`. Find A2 – A + BC
If A = [4 7] and B = [3 l], find: A - B
If P = `|(2 , 9),(5 , 7)|` and Q = `|(7 , 3),(4 , 1)|` , find 2P + 3Q
If A = `[(1 , 0),(-1 ,7)]` and I = `[(1 , 0),(0 ,1)]`, then find k so that A2 = 8A + kI.
If A = `[(2 , -1),(-4, 5)]` and B = [0 -3] find the matrix C such that CA = B
If `[(-1, 0),(0, 1)] [(a, b),(c, d)] = [(1, 0),(0, -1)]` find a,b,c and d
Given matrix, X = `[(1, 1),(8, 3)]` and I = `[(1, 0),(0, 1)]`, prove that X2 = 4X + 5I