Advertisements
Advertisements
प्रश्न
If A = `[(2 , -1),(-4, 5)]` and B = [0 -3] find the matrix C such that CA = B
उत्तर
A = `[(2 , -1),(-4, 5)]` and B = [0 -3]
Let matrix C = [x y]
Since the matrix A is 2 x 2 and B = 7 x 2
∵ CA = B
∴ `(x y) [(2, -1),(-4, 5)]` = [0 –3]
= (2x – 4y – x + 5y)
= [0 –3]
Comparing,
2x – 4y = 0
⇒ x – 2y = 0
∴ x = 2y
and
–x + 5y = –3
⇒ –2y + 5y = –3
⇒ 3y = –3
⇒ y = –1
∴ x = 2y
= 2 x (–1)
= –2
Hence C
= [x y]
= [–2 –1].
APPEARS IN
संबंधित प्रश्न
If A = `[(0, -1),(4, -3)]`, B = `[(-5),(6)]` and 3A × M = 2B; find matrix M.
Let A = `[(4, -2),(6, -3)]`, B = `[(0, 2),(1, -1)]` and C = `[(-2, 3),(1, -1)]`. Find A2 – A + BC
If P = `|(2,9),(5 , 7)|` and Q = `|(7 , 3),(4 , 1)|` find 3P - 2Q
Given that A = `[(3, 0),(0, 4)]` and B = `[(a, b),(0, c)]` and that AB = A + B, find the values of a, b and c.
Find x and y if
`[( x , 3x),(y , 4y)][(2),(1)] = [(5),(12)]`.
Evaluate x,y if
`[(3 , -2),(-1 , 4)][(2x),(1)]+2[(-4),(5)] = [(8),(4y)]`
If `"A" = [(1 , 2),(-2 , 3)], "B" = [(2 , 1),(2 , 3)] "C" = [(-3 , 1),(2 , 0)]` verify that
(AB)C = A(BC),
Find the values of a, b, c and d if `[(a + b, 3),(5 + c, ab)] = [(6, d),(-1, 8)]`
Choose the correct answer from the given four options :
If `x[(2),(3)] + y[(-1),(0)] = [(10),(6)]` then the values of x and y are
Find a and b if `[(a - b, b - 4),(b + 4, a - 2)] [(2, 0),(0, 2)] = [(2, -2),(14, 0)]`