Advertisements
Advertisements
प्रश्न
If A = `[(0, -1),(4, -3)]`, B = `[(-5),(6)]` and 3A × M = 2B; find matrix M.
उत्तर
Let the order of matrix M be a × b.
3A × M = 2B
`3[(0, -1),(4, -3)]_(2xx2) xx M_(a xx b) = 2[(-5), (6)]_(2 xx 1)`
Clearly, the order of matrix M is 2 × 1
Let `M = [(x),(y)]`
Then,
`3[(0, -1),(4, -3)] xx [(x),(y)] = 2[(-5),(6)]`
`[(0, -3),(12, -9)] xx [(x),(y)] = [(-10),(12)]`
`[(0 xx x + (-3)y),(12 xx x + (-9)y)] = [(-10),(12)]`
`[(0 - 3y),(12x - 9y)] = [(-10),(12)]`
`[(-3y),(12x - 9y)] = [(-10),(12)]`
Comparing the corresponding elements, we get
∴ –3y = –10
`=> y = 10/3`
12x – 9y = 12
`=> 12x - (9 xx 10)/3 = 12`
`=>` 12x – 30 = 12
`=>` 12x = 12 + 30
`=>` 12x = 42
∴ `x = 42/12 = 7/2`
∴ `M = [(7/2),(10/3)]`
APPEARS IN
संबंधित प्रश्न
If A = `[(2, 5),(1, 3)]`, B = `[(4, -2),(-1, 3)]` and I is the identity matric of the same order and At is the transpose of matrix A, find At.B + BI.
Evaluate:
`3[(5, -2)]`
If P = `[(1, 2),(2, -1)]` and Q = `[(1, 0),(2, 1)]`, then compute:
- P2 – Q2
- (P + Q)(P – Q)
Is (P + Q)(P – Q) = P2 – Q2 true for matrix algebra?
If A = `[(4, 2),(1,1)]`, find (A – 2I)(A – 3I).
Let A = `[(2, 1),(0, -2)]`, B = `[(4, 1),(-3, -2)]` and C = `[(-3, 2),(-1, 4)]`. Find A2 + AC – 5B.
Given A = `[(2,0), (-1,7)] and 1 = [(1,0), (0,1)]` and A2 = 9A +mI. Find m
Given that A = `[(3, 0),(0, 4)]` and B = `[(a, b),(0, c)]` and that AB = A + B, find the values of a, b and c.
Find the value of x given that A2 = B
A = `[(2, 12),(0 , 1)]` B = `[(4, x),(0, 1)]`
If `"A" = [(1 , 2),(-2 , 3)], "B" = [(2 , 1),(2 , 3)] "C" = [(-3 , 1),(2 , 0)]` verify that
(AB)C = A(BC),
If `"A" = [(1 , 2),(-2 , 3)], "B" = [(2 , 1),(2 , 3)] "C" = [(-3 , 1),(2 , 0)]` verify that
A(B + C) = AB + AC.