Advertisements
Advertisements
Question
If A = `[(0, -1),(4, -3)]`, B = `[(-5),(6)]` and 3A × M = 2B; find matrix M.
Solution
Let the order of matrix M be a × b.
3A × M = 2B
`3[(0, -1),(4, -3)]_(2xx2) xx M_(a xx b) = 2[(-5), (6)]_(2 xx 1)`
Clearly, the order of matrix M is 2 × 1
Let `M = [(x),(y)]`
Then,
`3[(0, -1),(4, -3)] xx [(x),(y)] = 2[(-5),(6)]`
`[(0, -3),(12, -9)] xx [(x),(y)] = [(-10),(12)]`
`[(0 xx x + (-3)y),(12 xx x + (-9)y)] = [(-10),(12)]`
`[(0 - 3y),(12x - 9y)] = [(-10),(12)]`
`[(-3y),(12x - 9y)] = [(-10),(12)]`
Comparing the corresponding elements, we get
∴ –3y = –10
`=> y = 10/3`
12x – 9y = 12
`=> 12x - (9 xx 10)/3 = 12`
`=>` 12x – 30 = 12
`=>` 12x = 12 + 30
`=>` 12x = 42
∴ `x = 42/12 = 7/2`
∴ `M = [(7/2),(10/3)]`
APPEARS IN
RELATED QUESTIONS
If A = `[(2, 5),(1, 3)]`, B = `[(4, -2),(-1, 3)]` and I is the identity matric of the same order and At is the transpose of matrix A, find At.B + BI.
If A = `[(4, 2),(1,1)]`, find (A – 2I)(A – 3I).
Given `[(2, 1),(-3, 4)] X = [(7), (6)]` write the order of matrix x
If matrix X = `[(-3, 4),(2, -3)][(2),(-2)]` and 2X – 3Y = `[(10),(-8)]`, find the matrix ‘X’ and matrix ‘Y’.
Find the positive integers p and q such that :
`[p q][p/q]= [25]`
If P =`|(2,9),(5,7)|` and Q = `|(7,3),(4,1)|` find 2Q - P
If A = `[(1,3), (3,4)]` B = `[(-2,1), (-3,2)]` and `A^2 - 5B^2 = 5C` Find the matrix C where C is a 2 by 2 matrix.
Evaluate x,y if
`[(3 , -2),(-1 , 4)][(2x),(1)]+2[(-4),(5)] = [(8),(4y)]`
Let A = `[(1 , 0),(2 , 1)]`, B = `[(2 , 3),(-1 , 0)]`. Find A2 + AB + B2
If A = `[(3, -4),(-1, 2)]`, find matrix B such that BA = I,where I is unity matrix of order 2