Advertisements
Advertisements
Question
If `[(a, 3),(4, 1)] + [(2, b),(1, -2)] - [(1, 1),(-2, c)] = [(5, 0),(7, 3)]`, find the values of a, b and c.
Solution
`[(a, 3),(4, 1)] + [(2, b),(1, -2)] - [(1, 1),(-2, c)] = [(5, 0),(7, 3)]`
`\implies [(a + 2 - 1, 3 + b - 1),(4 + 1 + 2, 2 - 2 - c)] = [(5, 0),(7, 3)]`
`\implies [(a + 1, 2 + b),(7, -1 - c)] = [(5, 0),(7, 3)]`
Comparing the corresponding elements, we get,
a + 1 = 5 `=>` a = 4
2 + b = 0 `=>` b = –2
–1 – c = 3 `=>` c = – 4
APPEARS IN
RELATED QUESTIONS
Given A = `[(2, -1),(2, 0)]`, B = `[(-3, 2),(4, 0)]` and C = `[(1, 0),(0, 2)]`, find the matrix X such that : A + X = 2B + C.
If A = `[(3, x),(0, 1)]` and B = `[(9, 16),(0, -y)]`, find x and y when A2 = B.
Find x and y, if
`[(-3, 2),(0, -5)] [(x),(2)] = [(-5), (y)]`
Find X and Y, if
`[(2x, x),(y , 3y)][(3),(2)] = [(16),(9)]`
Find the value of x given that A2 = B
A = `[(2, 12),(0 , 1)]` B = `[(4, x),(0, 1)]`
Let A = `[(1 , 0),(2 , 1)]`, B = `[(2 , 3),(-1 , 0)]`. Find A2 + AB + B2
Choose the correct answer from the given four options :
If B = `[(1, 5),(0, 3)]` and A – 2B = `[(0, 4),(-7, 5)]` then the matrix A is equal to
Find the values of a and below `[(a + 3, b^2 + 2),(0, -6)] = [(2a + 1, 3b),(0, b^2 - 5b)]`
Find a, b, c and d if `3[(a, b),(c, d)] = [(4, a + b),(c + d, 3)] + [(a, 6),(-1, 2d)]`
If A = `[(sec60°, cos90°),(-3tan45°, sin90°)] and "B" = [(0, cos45°),(-2, 3sin90°)]` Find : A2