Advertisements
Advertisements
Question
Find a, b, c and d if `3[(a, b),(c, d)] = [(4, a + b),(c + d, 3)] + [(a, 6),(-1, 2d)]`
Solution
Given
`3[(a, b),(c, d)] = [(4, a + b),(c + d, 3)] + [(a, 6),(-1, 2d)]`
⇒ `[(3a, 3b),(3c, 3d)] = [(4 + a, a + b + 6),(c + d - 1,3 + 2d)]`
Comparing the corresponding elements:
3a = 4 + a
⇒ 3a – a = 4
⇒ 2a = 4
∴ a = 2
3b = a + b + 6
⇒ 3b – b = 2 + 6
⇒ 2b = 8
∴ b = 4
3d = 3 + 2d
⇒ 3d - 2d = 3
∴ d = 3
3c = c + d – 1
⇒ 3c – c = 3 – 1
2c = 2
⇒ c = 1
Hence a = 2, b = 4, c = 1, d = 3.
APPEARS IN
RELATED QUESTIONS
If A = `[(2, 1),(1, 3)]` and B = `[(3),(-11)]`, find the matrix X such that AX = B.
If `[(a, 3),(4, 1)] + [(2, b),(1, -2)] - [(1, 1),(-2, c)] = [(5, 0),(7, 3)]`, find the values of a, b and c.
If A = [4 7] and B = [3 1] , find: A+2B
If P =`|(2,9),(5,7)|` and Q = `|(7,3),(4,1)|` find 2Q - P
Evaluate the following :
`|(-2 , 3),(-1 , 4)| |(6 , 4),(3 ,- 1)|`
Let `"A" = [(4 , -2),(6 , -3)], "B" = [(0 , 2),(1 , -1)] and "C" = [(-2 , 3),(1 , -1)]`. Find A2 - A + BC
If `"A" = [(3 , 1),(2 , 1)] and "B" = [(1 , -2),(5 , 3)]`, then show that (A - B)2 ≠ A2 - 2AB + B2.
If `[(x + 3, 4),(y - 4, x + y)] = [(5, 4),(3, 9)]`,find values of x and y
Choose the correct answer from the given four options :
If B = `[(1, 5),(0, 3)]` and A – 2B = `[(0, 4),(-7, 5)]` then the matrix A is equal to
Find the values of a and below `[(a + 3, b^2 + 2),(0, -6)] = [(2a + 1, 3b),(0, b^2 - 5b)]`