Advertisements
Advertisements
Question
If `[(x + 3, 4),(y - 4, x + y)] = [(5, 4),(3, 9)]`,find values of x and y
Solution
`[(x + 3, 4),(y - 4, x + y)] = [(5, 4),(3, 9)]`
Comparing the corresponding terms, we get.
x + 3 = 5
⇒ x = 5 – 3 = 2
⇒ y – 4 = 3
⇒ y = 3 + 4 = 7
x = 2, y = 7.
APPEARS IN
RELATED QUESTIONS
if `A = [(3,x),(0,1)], B = [(9,16),(0,-y)]`, Find x and y where `A^2 = B`
If P = `[(1, 2),(2, -1)]` and Q = `[(1, 0),(2, 1)]`, then compute:
- P2 – Q2
- (P + Q)(P – Q)
Is (P + Q)(P – Q) = P2 – Q2 true for matrix algebra?
If A = `[(3, a),(-4, 8)]`, B = `[(c, 4),(-3, 0)]`, C = `[(-1, 4),(3, b)]` and 3A – 2C = 6B, find the values of a, b and c.
Given A = `[(p, 0),(0, 2)]`, B = `[(0, -q),(1, 0)]`, C = `[(2, -2),(2, 2)]` and BA = C2. Find the values of p and q.
If `|(3"a" + 2"b" , 2"a" - "b"),(4"p" - 3"q" , 2"p" + "q")|` = `|(12 , 1),(16 , 8)|` , find the values of a , b , p and q.
Solve for x and y `[(-2,0), (3,1)][(-1), (2x)] +3[(-2), (1)] =2[(y), (3)]`
Given A = `[(2,0), (-1,7)] and 1 = [(1,0), (0,1)]` and A2 = 9A +mI. Find m
If A = `[(1 , 0),(-1 ,7)]` and I = `[(1 , 0),(0 ,1)]`, then find k so that A2 = 8A + kI.
If `"A" = [(a , b),(c , d)] and "I" = [(1 , 0),(0 , 1)]` show that A2 - (a + d) A = (bc - ad) I.
Choose the correct answer from the given four options :
If B = `[(1, 5),(0, 3)]` and A – 2B = `[(0, 4),(-7, 5)]` then the matrix A is equal to