Advertisements
Advertisements
Question
If A = `[(3, a),(-4, 8)]`, B = `[(c, 4),(-3, 0)]`, C = `[(-1, 4),(3, b)]` and 3A – 2C = 6B, find the values of a, b and c.
Solution
Given: A = `[(3, a),(-4, 8)]`, B = `[(c, 4),(-3, 0)]`, C = `[(-1, 4),(3, b)]`
∴ 3A = `3[(3, a),(-4, 8)] = [(9, 3a),(-12, 24)]`
6B = `6[(c, 4),(-3, 0)] = [(6c, 24),(-18, 0)]`
2C = `2[(-1, 4),(3, b)] = [(-2, 8),(6, 2b)]`
∵ 3A – 2C = 6B
∴ `[(9, 3a),(-12, 24)] - [(-2, 8),(6, 2b)] = [(6c, 24),(-18, 0)]`
`\implies [(9 - (-2), 3a - 8),(-12 - 6, 24 - 2b)] = [(6c, 24),(-18, 0)]`
`\implies [(11, 3a - 8),(-18, 24 - 2b)] = [(6c, 24),(-18, 0)]`
Comparing the corresponding terms, we have
3a – 8 = 24
`\implies` 3a = 24 + 8
`\implies` 3a = 32
`\implies a = 32/3 = 10 2/3`
And 24 – 2b = 0
`\implies` 2b = 24
`\implies` b = `24/2` = 12
And 6c = 11
`\implies c = 11/6 = 1 5/6`
Hence a = `10 2/3`, b = 12, c = `1 5/6`
APPEARS IN
RELATED QUESTIONS
if `A = [(3,x),(0,1)], B = [(9,16),(0,-y)]`, Find x and y where `A^2 = B`
If A = `[(1, 2),(2, 1)]` and B = `[(2, 1),(1, 2)]`; find (AB)B
Find x and y, if : `[(x, 3x),(y, 4y)][(2),(1)] = [(5),(12)]`.
If A = [4 7] and B = [3 l], find : 2A - 3B
If P = `|(2,9),(5 , 7)|` and Q = `|(7 , 3),(4 , 1)|` find 3P - 2Q
Find the value of p and q if:
`[(2p + 1 , q^2 - 2),(6 , 0)] = [(p + 3, 3q - 4),(5q - q^2, 0)]`.
Find x and y, if `((x,3x),(y, 4y))((2),(1)) = ((5),(12))`.
If A = `[(1 , 0),(-1 ,7)]` and I = `[(1 , 0),(0 ,1)]`, then find k so that A2 = 8A + kI.
If B = `[(-4, 2),(5, -1)] and "C" = [(17, -1),(47, -13)]` find the matrix A such that AB = C
Choose the correct answer from the given four options :
If `[(x + 2y, 3y),(4x, 2)] = [(0, -3),(8, 2)]` then the value of x – y is