Advertisements
Advertisements
Question
Let `A = [(1, 0),(2, 1)], B = [(2, 3),(-1, 0)]`. Find `A^2 + AB + B^2`
Solution
`A = [(1, 0),(2, 1)], B = [(2, 3),(-1, 0)]`
`A^2 = A xx A = [(1, 0),(2, 1)] xx [(1, 0),(2, 1)]`
`=[(1 xx 1 + 0 xx 2, 1 xx 0 + 0 xx 1),(2 xx 1 + 1 xx 2, 2 xx 0 + 1 xx 1)] = [(1, 0),(4, 1)]`
`AB = A xx B = [(1, 0),(2, 1)] xx [(2, 3),(-1, 0)]`
`=[(1 xx 2 + 0 xx (-1), 1 xx 3 + 0 xx 0),(2 xx 2 + 1 xx (-1), 2 xx 3 + 1 xx 0)]`
`= [(2, 3),(3, 6)]`
`B^2 = B xx B = [(2, 3),(-1, 0)] xx [(2, 3),(-1, 0)]`
`= [(2 xx 2 + 3 xx (-1), 2 xx 3 + 3 xx 0),((-1)xx2 + 0 xx (-1), -1 xx 3 + 0 xx 0)]`
`= [(1, 6),(-2, -3)]`
`:. A^2 + AB + B^2 = [(1, 0),(4, 1)] + [(2, 3),(3, 6)] + [(1, 6),(-2, -3)]`
`= [(4, 9),(5, 4)]`
APPEARS IN
RELATED QUESTIONS
Given A = `[(2, 0),(-1, 7)]` and I = `[(1, 0),(0, 1)]` and A2 = 9A + ml. Find m.
Find the value of and 'y' if:
`2[(x,y),(9 , (y - 5))] + [(6,4),(-7,5)] = [(10,7),(22,15)]`
If A = `[(2, 5),(1, 3)]`, B = `[(4, -2),(-1, 3)]` and I is the identity matric of the same order and At is the transpose of matrix A, find At.B + BI.
Evaluate:
`[(4 sin 30°, 2 cos 60°),(sin 90°, 2 cos 0°)] [(4, 5),(5, 4)]`
Evaluate:
`3[(5, -2)]`
Given A = `[(p, 0),(0, 2)]`, B = `[(0, -q),(1, 0)]`, C = `[(2, -2),(2, 2)]` and BA = C2. Find the values of p and q.
If A = `|(1215),(1117)|` and B = `|(2,7),(4,9)|` find : 2A + 3B
If A = `|(1215),(1117)|` and B = `|(2,7),(4,9)|` find A - 2B
If `"A" = [(3 , 1),(2 , 1)] and "B" = [(1 , -2),(5 , 3)]`, then show that (A - B)2 ≠ A2 - 2AB + B2.
If `[(x + 3, 4),(y - 4, x + y)] = [(5, 4),(3, 9)]`,find values of x and y