Advertisements
Advertisements
Question
If A = `[(2, 5),(1, 3)]`, B = `[(4, -2),(-1, 3)]` and I is the identity matric of the same order and At is the transpose of matrix A, find At.B + BI.
Solution
Given A = `[(2, 5),(1, 3)]`, B = `[(4, -2),(-1, 3)]`
At = `[(2, 1),(5, 3)]`
At.B + BI = `[(2, 1),(5, 3)][(4, -2),(-1, 3)] + [(4, -2),(-1, 3)][(1, 0),(0, 1)]`
= `[(8 - 1, -4 + 3),(20 - 3, -10 + 9)] + [(4 + 0, 0 - 2),(-1 + 0, 0 + 3)]`
= `[(7, -1),(17, -1)] + [(4, -2),(-1, 3)]`
= `[(7 + 4, -1 - 2),(17 - 1, -1 + 3)]`
= `[(11, -3),(16, 2)]`
APPEARS IN
RELATED QUESTIONS
Given matrix B = `[(1, 1),(8, 3)]`. Find the matrix X if, X = B2 – 4B. Hence, solve for a and b given `X[(a),(b)] = [(5),(50)]`.
If A = `|(1215),(1117)|` and B = `|(2,7),(4,9)|` find : 2A + 3B
If A = [4 7] and B = [3 l], find: A - B
Let A = `[(2, 1),(0, -2)]`, B = `[(4, 1),(-3, -2)]` and C = `[(-3, 2),(-1, 4)]`. Find A2 + AC – 5B.
If `"A" = [(1 , 2),(-2 , 3)], "B" = [(2 , 1),(2 , 3)] "C" = [(-3 , 1),(2 , 0)]` verify that
A(B + C) = AB + AC.
Find the values of x and y if : `[(2x + y),(3x - 2y)] = [(5),(4)]`
Find the values of x, y, a and b, if `[(3x + 4y, 2, x - 2y),(a + b, 2a - b, -1)] = [(2, 2, 4),(5, 5, 1)]`
If A = `[(2, -1),(-4, 5)] and "B" = [(-3),(2)]` find the matrix C such that AC = B
If A = `[(3, -4),(-1, 2)]`, find matrix B such that BA = I,where I is unity matrix of order 2
Given matrix, X = `[(1, 1),(8, 3)]` and I = `[(1, 0),(0, 1)]`, prove that X2 = 4X + 5I