Advertisements
Advertisements
Question
Using componendo and dividendo, find the value of x
`(sqrt(3x + 4) + sqrt(3x -5))/(sqrt(3x + 4)-sqrt(3x - 5)) = 9`
Solution
`(sqrt(3x + 4) + sqrt(3x -5))/(sqrt(3x + 4)-sqrt(3x - 5)) = 9`
Using componendo and dividendo,
`(sqrt(3x + 4) + sqrt(3x - 5) + sqrt(3x + 4) - sqrt(3x - 5))/(sqrt(3x + 4) + sqrt(3x - 5) - sqrt(3x + 4) + sqrt(3x - 5)) = (9+1)/(9-1)`
`=> (2sqrt(3x + 4))/(2sqrt(3x - 5)) = 10/8`
`=> sqrt(3x + 4)/(sqrt(3x -5)) = 5/4`
Squaring both sides,
`=> (3x + 4)/(3x - 5) = 25/16`
`=>16(3x + 4) = 25(3x - 5)`
`=> 48x + 64 = 75x - 125`
`=> 75x - 48x = 64 + 125`
`=> 27x = 189`
`=> x = 7`
APPEARS IN
RELATED QUESTIONS
If a : b = c : d, prove that: (9a + 13b)(9c – 13d) = (9c + 13d)(9a – 13b).
If a : b = c : d, prove that: (6a + 7b)(3c – 4d) = (6c + 7d)(3a – 4b).
Given, `a/b = c/d`, prove that: `(3a - 5b)/(3a + 5b) = (3c - 5d)/(3c + 5d)`
If 7x – 15y = 4x + y, find the value of x : y. Hence, use componendo and dividendo to find the values of:
`(9x + 5y)/(9x - 5y)`
If a : b =c : d, then prove that `("a"^2 + "c"^2)/("b"^2 + "d"^2) = ("ac")/("bc")`
If p, q, r ands are In continued proportion, then prove that (p3+q3+r3) ( q3+r3+s3) : : P : s
If x = `(4sqrt(6))/(sqrt(2) + sqrt(3)` find the value of `(x + 2sqrt(2))/(x - 2sqrt(2)) + (x + 2sqrt(3))/(x - 2sqrt(3)`
Solve for `x : 16((a - x)/(a + x))^3 = (a + x)/(a - x)`
If x = `(sqrt(a + 1) + sqrt(a - 1))/(sqrt(a + 1 - sqrt(a - 1)`, using properties of proportion, show that x2 – 2ax + 1 = 0
If (a + b) : (a – b) = 13 : 3 ; a : b is ______.