Advertisements
Advertisements
Question
If x = `(4sqrt(6))/(sqrt(2) + sqrt(3)` find the value of `(x + 2sqrt(2))/(x - 2sqrt(2)) + (x + 2sqrt(3))/(x - 2sqrt(3)`
Solution
x = `(4sqrt(6))/(sqrt(2) + sqrt(3)`
⇒ `(4sqrt(2) xx sqrt(3))/(sqrt(2) + sqrt(3)`
`x/(2sqrt(2)) = (2sqrt(3))/(sqrt(2) + sqrt(3)`
Applying componendo and dividendo,
`(x + 2sqrt(2))/(x - 2sqrt(2))`
= `(2sqrt(3) + sqrt(2) + sqrt(3))/(2sqrt(3) - sqrt(2) - sqrt(3))`
= `(3sqrt(3) + sqrt(2))/(sqrt(3) - sqrt(2)` ...(i)
Again `x/(2sqrt(3)) = (2sqrt(2))/(sqrt(2) + sqrt(3)`
Applying componendo and dividendo,
`(x + 2sqrt(3))/(x - 2sqrt(3))`
= `(2sqrt(2) + sqrt(2) + sqrt(3))/(2sqrt(2) - sqrt(2) - sqrt(3))`
= `(3sqrt(2) + sqrt(3))/(sqrt(2) - sqrt(3)` ...(ii)
Adding (i) and (ii)
`(x + 2sqrt(2))/(x - 2sqrt(2)) + (x + 2sqrt(3))/(x - 2sqrt(3)`
= `(3sqrt(3) + sqrt(2))/(sqrt(3) - sqrt(2)) + (3sqrt(2) + sqrt(3))/(sqrt(2) - sqrt(3)`
= `(3sqrt(3) + sqrt(2))/(sqrt(3) - sqrt(2)) - (3sqrt(2) + sqrt(3))/(sqrt(3) - sqrt(2)`
= `(3sqrt(3) + sqrt(2) - 3sqrt(2) - sqrt(3))/(sqrt(3) - sqrt(2)`
= `(2sqrt(3) - 2sqrt(2))/(sqrt(3) - sqrt(2)`
= `(2(sqrt(3) - sqrt(2)))/(sqrt(3) - sqrt(2)`
= 2.
APPEARS IN
RELATED QUESTIONS
If a : b = c : d, prove that: 5a + 7b : 5a – 7b = 5c + 7d : 5c – 7d.
If a : b = c : d, prove that: (9a + 13b)(9c – 13d) = (9c + 13d)(9a – 13b).
If `x = (sqrt(a + 1) + sqrt(a - 1))/(sqrt(a + 1) - sqrt(a - 1))`, using properties of proportion show that: x2 – 2ax + 1 = 0.
If (7m +8n)(7p - 8q) = (7m - 8n)(7p + 8q), then prove that m: n = p: q
If `a/b = c/d,` show that (9a + 13b) (9c - 13d) = (9c + 13b) (9a - 13d).
if `(3a + 4b)/(3c + 4d) = (3a - 4b)/(3c - 4d)` Prove that `a/b = c/d`.
If a : b : : c : d, prove that `(2a +5b)/(2a - 5b) = (2c + 5d)/(2c - 5d)`
If (a + 3b + 2c + 6d) (a – 3b – 2c + 6d) = (a + 3b – 2c – 6d) (a – 3b + 2c – 6d), prove that a : b :: c : d.
Find x from the following equations : `(3x + sqrt(9x^2 - 5))/(3x - sqrt(9x^2 - 5)) = (5)/(1)`
Solve for `x : 16((a - x)/(a + x))^3 = (a + x)/(a - x)`