Advertisements
Advertisements
प्रश्न
If x = `(4sqrt(6))/(sqrt(2) + sqrt(3)` find the value of `(x + 2sqrt(2))/(x - 2sqrt(2)) + (x + 2sqrt(3))/(x - 2sqrt(3)`
उत्तर
x = `(4sqrt(6))/(sqrt(2) + sqrt(3)`
⇒ `(4sqrt(2) xx sqrt(3))/(sqrt(2) + sqrt(3)`
`x/(2sqrt(2)) = (2sqrt(3))/(sqrt(2) + sqrt(3)`
Applying componendo and dividendo,
`(x + 2sqrt(2))/(x - 2sqrt(2))`
= `(2sqrt(3) + sqrt(2) + sqrt(3))/(2sqrt(3) - sqrt(2) - sqrt(3))`
= `(3sqrt(3) + sqrt(2))/(sqrt(3) - sqrt(2)` ...(i)
Again `x/(2sqrt(3)) = (2sqrt(2))/(sqrt(2) + sqrt(3)`
Applying componendo and dividendo,
`(x + 2sqrt(3))/(x - 2sqrt(3))`
= `(2sqrt(2) + sqrt(2) + sqrt(3))/(2sqrt(2) - sqrt(2) - sqrt(3))`
= `(3sqrt(2) + sqrt(3))/(sqrt(2) - sqrt(3)` ...(ii)
Adding (i) and (ii)
`(x + 2sqrt(2))/(x - 2sqrt(2)) + (x + 2sqrt(3))/(x - 2sqrt(3)`
= `(3sqrt(3) + sqrt(2))/(sqrt(3) - sqrt(2)) + (3sqrt(2) + sqrt(3))/(sqrt(2) - sqrt(3)`
= `(3sqrt(3) + sqrt(2))/(sqrt(3) - sqrt(2)) - (3sqrt(2) + sqrt(3))/(sqrt(3) - sqrt(2)`
= `(3sqrt(3) + sqrt(2) - 3sqrt(2) - sqrt(3))/(sqrt(3) - sqrt(2)`
= `(2sqrt(3) - 2sqrt(2))/(sqrt(3) - sqrt(2)`
= `(2(sqrt(3) - sqrt(2)))/(sqrt(3) - sqrt(2)`
= 2.
APPEARS IN
संबंधित प्रश्न
If `(7m + 2n)/(7m - 2n) = 5/3`, use properties of proportion to find:
- m : n
- `(m^2 + n^2)/(m^2 - n^2)`
Given `(x^3 + 12x)/(6x^2 + 8) = (y^3+ 27y)/(9y^2 + 27)`. Using componendo and dividendo find x : y.
if x = `(sqrt(a + 1) + sqrt(a-1))/(sqrt(a + 1) - sqrt(a - 1))` using properties of proportion show that `x^2 - 2ax + 1 = 0`
If a : b = c : d, prove that: xa + yb : xc + yd = b : d.
If (7m +8n)(7p - 8q) = (7m - 8n)(7p + 8q), then prove that m: n = p: q
If a : b :: c : d :: e : f, then prove that `("ae" + "bf")/("ae" - "bf")` = `("ce" + "df")/("ce" - "df")`
If y = `((p + 1)^(1/3) + (p - 1)^(1/3))/((p + 1)^(1/3) - (p - 1)^(1/3)` find that y3 - 3py2 + 3y - p = 0.
Given that `(a^3 + 3ab^2)/(b^2 + 3a^2b) = (63)/(62)`.
Using Componendo and Dividendo find a : b.
If `(x + y)/(ax + by) = (y + z)/(ay + bz) = (z + x)/(az + bx)`, prove that each of these ratio is equal to `(2)/(a + b)` unless x + y + z = 0
Find x from the equation `(a+ x + sqrt(a^2 x^2))/(a + x - sqrt(a^2 - x^2)) = b/x`