Advertisements
Advertisements
प्रश्न
If a : b :: c : d :: e : f, then prove that `("ae" + "bf")/("ae" - "bf")` = `("ce" + "df")/("ce" - "df")`
उत्तर
`"a"/"b" = "c"/"d" = "e"/"f"`
`"a"/"b" xx "e"/"f" = "c"/"d" xx "e"/"f"`
`=> ("ae")/("bf") = "ce"/"df"`
Applying componendo and dividendo
`("ae + bf")/("ae - bf") = ("ce + df")/("ce - df")`
Hence , proved.
APPEARS IN
संबंधित प्रश्न
Given x = `(sqrt(a^2 + b^2) + sqrt(a^2 - b^2))/(sqrt(a^2 + b^2) - sqrt(a^2 - b^2))`
Use componendo and dividendo to prove that `b^2 = (2a^2x)/(x^3 + 1)`
If p, q, r ands are In continued proportion, then prove that (p3+q3+r3) ( q3+r3+s3) : : P : s
If `(3x + 5y)/(3x - 5y) = (7)/(3)`, find x : y.
If `a/b = c/d,` show that (9a + 13b) (9c - 13d) = (9c + 13b) (9a - 13d).
If a : b : : c : d, prove that `(2a +5b)/(2a - 5b) = (2c + 5d)/(2c - 5d)`
Find x from the following equations : `(sqrt(2 - x) + sqrt(2 + x))/(sqrt(2 - x) - sqrt(2 + x)` = 3
Find x from the following equations : `(sqrt(x + 4) + sqrt(x - 10))/(sqrt(x + 4) - sqrt(x - 10)) = (5)/(2)`
Solve for `x : 16((a - x)/(a + x))^3 = (a + x)/(a - x)`
If x = `(root(3)(a + 1) + root(3)(a - 1))/(root(3)(a + 1) - root(3)(a - 1)`,prove that :
x³ – 3ax² + 3x – a = 0
If (a + b) : (a – b) = 13 : 3 ; a : b is ______.