Advertisements
Advertisements
प्रश्न
Solve for `x : 16((a - x)/(a + x))^3 = (a + x)/(a - x)`
उत्तर
`x : 16((a - x)/(a + x))^3 = (a + x)/(a - x)`
⇒ `((a + x)/(a - x)) xx ((a + x)/(a - x))^3` = 16
⇒ `((a + x)/(a - x))^4` = 16 = (±2)4
⇒ `(a + x)/(a - x)` = ±2
When `(a + x)/(a - x) = (2)/(1)`
Applying componendo and dividendo,
`(a + x + a - x)/(a + x - a + x) = (2 + 1)/(2 - 1)`
⇒ `(2a)/(2x) = (3)/(1)`
⇒ `a/x = (3)/(1)`
⇒ 3x = a
∴ x = `a/(3)`
When `(a + x)/(a -x) = (-2)/(1)`
Applying componendo and dividendo
`(a + x + a - x)/(a + x - a + x) = (-2 + 1)/(-2 - 1)`
⇒ `(2a)/(2x) = (-1)/(3)`
⇒ `a/x = (1)/(3)`
⇒ x = 3a
Hence x = `a/(3), 3a`.
APPEARS IN
संबंधित प्रश्न
Given `(x^3 + 12x)/(6x^2 + 8) = (y^3+ 27y)/(9y^2 + 27)`. Using componendo and dividendo find x : y.
If `(a - 2b - 3c + 4d)/(a + 2b - 3c - 4d) = (a - 2b + 3c - 4d)/(a + 2b + 3c + 4d)`, show that: 2ad = 3bc.
Given x = `(sqrt(a^2 + b^2) + sqrt(a^2 - b^2))/(sqrt(a^2 + b^2) + sqrt(a^2 - b^2))`
Use componendo and dividendo to prove that b^2 = (2a^2x)/(x^2 + 1)
If a : b =c : d, then prove that `("a"^2 + "c"^2)/("b"^2 + "d"^2) = ("ac")/("bc")`
Find x, if `16((a - x)/(a + x))^3 = (a + x)/(a - x)`.
If (11a² + 13b²) (11c² – 13d²) = (11a² – 13b²)(11c² + 13d²), prove that a : b :: c : d.
Solve x : `(sqrt(36x + 1) + 6sqrt(x))/(sqrt(36x + 1) -6sqrt(x))` = 9
If x = `(sqrt(a + 1) + sqrt(a - 1))/(sqrt(a + 1 - sqrt(a - 1)`, using properties of proportion, show that x2 – 2ax + 1 = 0
If `(x^2 - 4)/(x^2 + 4) = 3/5`, the value of x is ______.
If x = y, the value of (3x + y) : (5x – 3y) is ______.