Advertisements
Advertisements
प्रश्न
Given x = `(sqrt(a^2 + b^2) + sqrt(a^2 - b^2))/(sqrt(a^2 + b^2) + sqrt(a^2 - b^2))`
Use componendo and dividendo to prove that b^2 = (2a^2x)/(x^2 + 1)
उत्तर
x = `(sqrt(a^2 + b^2) + sqrt(a^2 - b^2))/(sqrt(a^2 + b^2) + sqrt(a^2 - b^2))`
by componendo and dividendo
`(x + 1)/(x - 1) = (sqrt(a^2 + b^2) + sqrt(a^2 - b^2) + sqrt(a^2 + b^2) - sqrt(a^2 - b^2))/(sqrt(a^2 + b^2) + sqrt(a^2 - b^2) - sqrt(a^2 + b^2) + sqrt(a^2 - b^2))`
`(x + 1)/(x - 1) = (2sqrt(a^2 + b^2))/(2sqrt(a^2 - b^2))`
Squaring both sides
`(x^2 + 2x + 1)/(x^2 - 2x + 1) = (a^2 + b^2)/(a^2 - b^2)`
By componendo and dividendo
`((x^2 + 2x + 1) + (x^2 - 2x + 1))/((x^2 + 2x + 1) - (x^2 - 2x + 1)) = ((a^2 + b^2) + (a^2 - b^2))/((a^2 + b^2) - (a^2 - b^2))`
`=> (2(x^2 + 1))/(4x) = (2a^2)/(2b^2)`
`=> (x^2 + 1)/(2x) = a^2/b^2`
`=> b^2 = (2a^2 x)/(x^2 + 1)`
APPEARS IN
संबंधित प्रश्न
If (7a + 8b)(7c – 8d) = (7a – 8b)(7c + 8d); prove that a : b = c : d.
If `(x^2 + y^2)/(x^2 - y^2) = 2 1/8`, find: `x/y`
If y = `(sqrt(a + 3b) + sqrt(a - 3b))/(sqrt(a + 3b) - sqrt(a - 3b))`, show that 3by2 - 2ay + 3b = 0.
If `p/q = r/s`, prove that `(2p + 3q)/(2p - 3q) = (2r + 3s)/(2r - 3s)`.
If (11a² + 13b²) (11c² – 13d²) = (11a² – 13b²)(11c² + 13d²), prove that a : b :: c : d.
Solve for `x : 16((a - x)/(a + x))^3 = (a + x)/(a - x)`
If x = `"pab"/(a + b)`, provee that `(x + pa)/(x - pa) - (x + pb)/(x - pb) = (2(a^2 - b^2))/(ab)`
Find x from the equation `(a+ x + sqrt(a^2 x^2))/(a + x - sqrt(a^2 - x^2)) = b/x`
If `x/(a + b - c) = y/(b + c - a) = z/(c + a - b) = 5` and a + b + c = 7; the value of x + y + z is ______.
If x = y, the value of (3x + y) : (5x – 3y) is ______.