Advertisements
Advertisements
Question
Given x = `(sqrt(a^2 + b^2) + sqrt(a^2 - b^2))/(sqrt(a^2 + b^2) + sqrt(a^2 - b^2))`
Use componendo and dividendo to prove that b^2 = (2a^2x)/(x^2 + 1)
Solution
x = `(sqrt(a^2 + b^2) + sqrt(a^2 - b^2))/(sqrt(a^2 + b^2) + sqrt(a^2 - b^2))`
by componendo and dividendo
`(x + 1)/(x - 1) = (sqrt(a^2 + b^2) + sqrt(a^2 - b^2) + sqrt(a^2 + b^2) - sqrt(a^2 - b^2))/(sqrt(a^2 + b^2) + sqrt(a^2 - b^2) - sqrt(a^2 + b^2) + sqrt(a^2 - b^2))`
`(x + 1)/(x - 1) = (2sqrt(a^2 + b^2))/(2sqrt(a^2 - b^2))`
Squaring both sides
`(x^2 + 2x + 1)/(x^2 - 2x + 1) = (a^2 + b^2)/(a^2 - b^2)`
By componendo and dividendo
`((x^2 + 2x + 1) + (x^2 - 2x + 1))/((x^2 + 2x + 1) - (x^2 - 2x + 1)) = ((a^2 + b^2) + (a^2 - b^2))/((a^2 + b^2) - (a^2 - b^2))`
`=> (2(x^2 + 1))/(4x) = (2a^2)/(2b^2)`
`=> (x^2 + 1)/(2x) = a^2/b^2`
`=> b^2 = (2a^2 x)/(x^2 + 1)`
APPEARS IN
RELATED QUESTIONS
If `x = (6ab)/(a + b)`, find the value of `(x + 3a)/(x - 3a) + (x + 3b)/(x - 3b)`.
If (4a + 9b)(4c – 9d) = (4a – 9b)(4c + 9d), prove that: a : b = c : d.
If y = `(sqrt(a + 3b) + sqrt(a - 3b))/(sqrt(a + 3b) - sqrt(a - 3b))`, show that 3by2 - 2ay + 3b = 0.
Solve for x : `(1 - px)/(1 + px) = sqrt((1 + qx)/(1 - qx)`
If a : b = c : d, show that (2a - 7b) (2c + 7d) = (2c - 7d) (2a + 7b).
If `(3x + 4y)/(3u + 4v) = (3x - 4y)/(3u - 4v)`, then show that `x/y = u/v`.
Find x from the following equations : `(sqrt(x + 4) + sqrt(x - 10))/(sqrt(x + 4) - sqrt(x - 10)) = (5)/(2)`
Given `x = (sqrt(a^2 + b^2) + sqrt(a^2 - b^2))/(sqrt(a^2 + b^2) - sqrt(a^2 - b^2)`. Use componendo and dividendo to prove that: `b^2 = (2a^2x)/(x^2 + 1)`
Using the properties of proportion, solve the following equation for x; given `(x^3 + 3x)/(3x^2 + 1) = (341)/(91)`
If (a + b) : (a – b) = 13 : 3 ; a : b is ______.