Advertisements
Advertisements
Question
Find x from the following equations : `(sqrt(x + 4) + sqrt(x - 10))/(sqrt(x + 4) - sqrt(x - 10)) = (5)/(2)`
Solution
`(sqrt(x + 4) + sqrt(x - 10))/(sqrt(x + 4) - sqrt(x - 10)) = (5)/(2)`
Applying componendo and dividendo,
`(sqrt(x + 4) + sqrt(x - 10) + sqrt(x + 4) - sqrt(x - 10))/(sqrt(x + 4) + sqrt(x - 10) - sqrt(x + 4) + sqrt(x - 10)) = (5 + 2)/(5 - 2)`
⇒ `(2sqrt(x + 4))/(2sqrt(x - 10)) = (7)/(3)`
⇒ `(sqrt(x + 4))/(sqrt(x - 10)) = (7)/(3)`
Squaring both sides,
`(x + 4)/(x - 10) = (49)/(9)`
⇒ 49x – 490 = 9x + 36
⇒ 49x – 9x = 36 + 490x
⇒ 40x = 526
∴ x = `(526)/(40)`
= `(263)/(20)`.
APPEARS IN
RELATED QUESTIONS
If `x = (6ab)/(a + b)`, find the value of `(x + 3a)/(x - 3a) + (x + 3b)/(x - 3b)`.
If a : b : : c : d, then prove that
7a+11b : 7a -11b = 7c +11d : 7c - 11d
If (7m +8n)(7p - 8q) = (7m - 8n)(7p + 8q), then prove that m: n = p: q
Find x, if `16((a - x)/(a + x))^3 = (a + x)/(a - x)`.
If x = `(4sqrt(6))/(sqrt(2) + sqrt(3)` find the value of `(x + 2sqrt(2))/(x - 2sqrt(2)) + (x + 2sqrt(3))/(x - 2sqrt(3)`
Find x from the following equations : `(sqrt(2 - x) + sqrt(2 + x))/(sqrt(2 - x) - sqrt(2 + x)` = 3
If x = `(2mab)/(a + b)`, find the value of `(x + ma)/(x - ma) + (x + mb)/(x - mb)`
If a : b = 2 : 1, the value of (7a + 4b) : (5a – 2b) is ______.
If `x/(a + b - c) = y/(b + c - a) = z/(c + a - b) = 5` and a + b + c = 7; the value of x + y + z is ______.
If x = y, the value of (3x + y) : (5x – 3y) is ______.