Advertisements
Advertisements
Question
If `x = (6ab)/(a + b)`, find the value of `(x + 3a)/(x - 3a) + (x + 3b)/(x - 3b)`.
Solution
`x = (6ab)/(a + b)`
`=> x/(3a) = (2b)/(a + b)`
Aplying compinendo and dividend,
`(x + 3a)/(x - 3a) = (2b + a + b)/(2b - a - b)`
`(x + 3a)/(x - 3a) = (3b + a)/(b - a)` ...(1)
Again, `x = (6ab)/(a + b)`
`=> x/(3b) = (2a)/(a + b)`
Applying componendo and dividendo,
`(x + 3b)/(x - 3b) = (2a + a + b)/(2a - a - b)`
`(x + 3b)/(x - 3b) = (3a + b)/(a - b)` ...(2)
From (1) and (2)
`(x + 3a)/(x - 3a) + (x + 3b)/(x - 3b) = (3b + a)/(b -a) + (3a + b)/(a - b)`
`(x + 3a)/(x - 3a) + (x + 3b)/(x - 3b) = (-3b -a + 3a + b)/(a - b)`
`(x + 3a)/(x - 3a) + (x + 3b)/(x - 3b) = (2a - 2b)/(a - b) = 2`
APPEARS IN
RELATED QUESTIONS
If (a + b + c + d) (a – b – c + d) = (a + b – c – d) (a – b + c – d), prove that a : b = c : d.
If 7x – 15y = 4x + y, find the value of x : y. Hence, use componendo and dividendo to find the values of:
`(9x + 5y)/(9x - 5y)`
Given `(x^3 + 12x)/(6x^2 + 8) = (y^3 + 27y)/(9y^2 + 27)` using componendo and divendo find x : y
Find the value of
`(x + sqrt(3))/(x - sqrt(3)) + (x + sqrt(2))/(x - sqrt(2)), if x = (2sqrt(6))/(sqrt(3) + sqrt(2)`.
Given : x = `(sqrt(a^2 + b^2)+sqrt(a^2 - b^2))/(sqrt(a^2 + b^2)-sqrt(a^2 - b^2))`
Use componendo and dividendo to prove that `b^2 = (2a^2x)/(x^2 + 1)`.
If (pa + qb) : (pc + qd) :: (pa – qb) : (pc – qd) prove that a : b : : c : d
Find x from the following equations : `(3x + sqrt(9x^2 - 5))/(3x - sqrt(9x^2 - 5)) = (5)/(1)`
Solve `(1 + x + x^2)/(1 - x + x^2) = (62(1 +x))/(63(1 + x)`
If x = `(root(3)(a + 1) + root(3)(a - 1))/(root(3)(a + 1) - root(3)(a - 1)`,prove that :
x³ – 3ax² + 3x – a = 0
Using Componendo and Dividendo solve for x:
`(sqrt(2x + 2) + sqrt(2x - 1))/(sqrt(2x + 2) - sqrt(2x - 1))` = 3