Advertisements
Advertisements
Question
If (pa + qb) : (pc + qd) :: (pa – qb) : (pc – qd) prove that a : b : : c : d
Solution
(pa + qb) : (pc + qd) :: (pa – qb) : (pc – qd)
⇒ `"pa + qb"/"pc + qd" = "pq - qb"/"pc - qd"`
⇒ `"pa + qb"/"pc - qd" = "pq + qb"/"pc - qd"`
Applying componendo and dividendo
⇒ `"pa + qb + pa - qb"/"pa + qb - pa + qb" = "pc + qs + pc - qd"/"pc - qd - pc + qd"`
⇒ `(2pa)/(2qb) = (2pc)/(2qd)`
⇒ `a/b = c/d ...("Dividing by" (2p)/(2q))`
Hence a : b :: c = d.
APPEARS IN
RELATED QUESTIONS
If a : b = c : d, prove that: 5a + 7b : 5a – 7b = 5c + 7d : 5c – 7d.
If a : b = c : d, prove that: (6a + 7b)(3c – 4d) = (6c + 7d)(3a – 4b).
If `(a - 2b - 3c + 4d)/(a + 2b - 3c - 4d) = (a - 2b + 3c - 4d)/(a + 2b + 3c + 4d)`, show that: 2ad = 3bc.
If `(x^2 + y^2)/(x^2 - y^2) = 2 1/8`, find: `(x^3 + y^3)/(x^3 - y^3)`
If a : b : : c : d, then prove that
7a+11b : 7a -11b = 7c +11d : 7c - 11d
If `(8a - 5b)/(8c - 5d) = (8a + 5b)/(8c + 5d), "prove that" a/b = c/d.`
Given that `(a^3 + 3ab^2)/(b^2 + 3a^2b) = (63)/(62)`.
Using Componendo and Dividendo find a : b.
If `(3x + 4y)/(3u + 4v) = (3x - 4y)/(3u - 4v)`, then show that `x/y = u/v`.
Solve x : `(sqrt(36x + 1) + 6sqrt(x))/(sqrt(36x + 1) -6sqrt(x))` = 9
Find x from the following equations : `(sqrt(1 + x) + sqrt(1 - x))/(sqrt(1 + x) - sqrt(1 - x)) = a/b`