Advertisements
Advertisements
Question
If `(8a - 5b)/(8c - 5d) = (8a + 5b)/(8c + 5d), "prove that" a/b = c/d.`
Solution
`(8a - 5b)/(8c - 5d) = (8a + 5b)/(8c + 5d)`
Applying alternendo
`(8a - 5b)/(8a + 5d) = (8c + 5d)/(8c + 5d)`
Applying componendo and Dividendo
`(8a - 5b + 8a + 5d)/(8a - 5b - 8a - 5d) = (8c - 5d + 8c + 5d)/(8c - 5d - 8c - 5d)`
`(16a)/(-10b) = (16c)/(-10d)`
`a/b = c/d`
Hence Proved.
APPEARS IN
RELATED QUESTIONS
If a : b = c : d, prove that: xa + yb : xc + yd = b : d.
Given, `a/b = c/d`, prove that: `(3a - 5b)/(3a + 5b) = (3c - 5d)/(3c + 5d)`
If `x = (sqrt(a + 1) + sqrt(a - 1))/(sqrt(a + 1) - sqrt(a - 1))`, using properties of proportion show that: x2 – 2ax + 1 = 0.
If a : b : : c : d, then prove that
`(4"a" + 9"b")/(4"c" + 9"d") = (4"a" - 9"b")/(4"c" - 9"d")`
If a : b : : c : d, then prove that
(ax+ by): (cx + dy)=(ax - by) : (cx - dy)
If (7m +8n)(7p - 8q) = (7m - 8n)(7p + 8q), then prove that m: n = p: q
Find x from the following equations : `(sqrt(2 - x) + sqrt(2 + x))/(sqrt(2 - x) - sqrt(2 + x)` = 3
Find x from the following equations : `(sqrt(12x + 1) + sqrt(2x - 3))/(sqrt(12x + 1) - sqrt(2x - 3)) = (3)/(2)`
`(x + y)/z = (y + z)/x = (z + x)/y` is equal to ______.
If `(x^2 - 4)/(x^2 + 4) = 3/5`, the value of x is ______.