Advertisements
Advertisements
Question
If a : b : : c : d, then prove that
(ax+ by): (cx + dy)=(ax - by) : (cx - dy)
Solution
(ax+ by): (cx + dy)=(ax - by) : (cx - dy)
`"a"/"b" = "c"/"d"`
Multiplying both sides by `"x"/"y"`
`=> "a"/"b" xx "x"/"y" = "c"/"d" xx "x"/"y"`
`=> ("ax")/("by") = ("cx")/("dy")`
Applying componendo and dividendo,
`("ax+ by")/("ax - by") = ("cx + dy")/("cx - dy")`
` => ("ax+ by")/("cx + dy") = ("ax - by")/("cx - dy")`
Hence, ax + by : cx + dy = ax - by : cx - dy
APPEARS IN
RELATED QUESTIONS
Given x = `(sqrt(a^2 + b^2) + sqrt(a^2 - b^2))/(sqrt(a^2 + b^2) - sqrt(a^2 - b^2))`
Use componendo and dividendo to prove that `b^2 = (2a^2x)/(x^3 + 1)`
If a : b = c : d, prove that: (6a + 7b)(3c – 4d) = (6c + 7d)(3a – 4b).
If `(5x + 6y)/(5u + 6v) = (5x - 6y)/(5u - 6v)`; then prove that x : y = u : v.
If `x = (2ab)/(a + b)`, find the value of `(x + a)/(x - a) + (x +b)/(x - b)`.
If a : b = c : d , then prove that `("a"^2 + "ab" +
"b"^2)/("a"^2 - "ab" + "b"^2) = ("c"^2 + "cd"+ "d"^2)/("c"^2 - "cd" + "d"^2)`
If `(5x + 7y)/(5u + 7v) = (5x - 7y)/(5u - 7v)`, show that `x/y = u/v`
Find x from the following equations : `(sqrt(a + x) + sqrt(a - x))/(sqrt(a + x) - sqrt(a - x)) = c/d`
Solve for `x : 16((a - x)/(a + x))^3 = (a + x)/(a - x)`
If `x/(a + b - c) = y/(b + c - a) = z/(c + a - b) = 5` and a + b + c = 7; the value of x + y + z is ______.
If (a + b) : (a – b) = 13 : 3 ; a : b is ______.