Advertisements
Advertisements
प्रश्न
If a : b : : c : d, then prove that
(ax+ by): (cx + dy)=(ax - by) : (cx - dy)
उत्तर
(ax+ by): (cx + dy)=(ax - by) : (cx - dy)
`"a"/"b" = "c"/"d"`
Multiplying both sides by `"x"/"y"`
`=> "a"/"b" xx "x"/"y" = "c"/"d" xx "x"/"y"`
`=> ("ax")/("by") = ("cx")/("dy")`
Applying componendo and dividendo,
`("ax+ by")/("ax - by") = ("cx + dy")/("cx - dy")`
` => ("ax+ by")/("cx + dy") = ("ax - by")/("cx - dy")`
Hence, ax + by : cx + dy = ax - by : cx - dy
APPEARS IN
संबंधित प्रश्न
If a : b = c : d, prove that: (6a + 7b)(3c – 4d) = (6c + 7d)(3a – 4b).
If (7m +8n)(7p - 8q) = (7m - 8n)(7p + 8q), then prove that m: n = p: q
If y = `((p + 1)^(1/3) + (p - 1)^(1/3))/((p + 1)^(1/3) - (p - 1)^(1/3)` find that y3 - 3py2 + 3y - p = 0.
If a : b = c : d, show that (2a - 7b) (2c + 7d) = (2c - 7d) (2a + 7b).
If `(3x + 4y)/(3u + 4v) = (3x - 4y)/(3u - 4v)`, then show that `x/y = u/v`.
If `(8a - 5b)/(8c - 5a) = (8a + 5b)/(8c + 5d)`, prove that `a/b = c/d`
If (4a + 5b) (4c – 5d) = (4a – 5d) (4c + 5d), prove that a, b, c, d are in proporton.
Solve `(1 + x + x^2)/(1 - x + x^2) = (62(1 +x))/(63(1 + x)`
Using Componendo and Dividendo solve for x:
`(sqrt(2x + 2) + sqrt(2x - 1))/(sqrt(2x + 2) - sqrt(2x - 1))` = 3
If a : b = 2 : 1, the value of (7a + 4b) : (5a – 2b) is ______.