Advertisements
Advertisements
प्रश्न
If a : b : : c : d, then prove that
(ax+ by): (cx + dy)=(ax - by) : (cx - dy)
उत्तर
(ax+ by): (cx + dy)=(ax - by) : (cx - dy)
`"a"/"b" = "c"/"d"`
Multiplying both sides by `"x"/"y"`
`=> "a"/"b" xx "x"/"y" = "c"/"d" xx "x"/"y"`
`=> ("ax")/("by") = ("cx")/("dy")`
Applying componendo and dividendo,
`("ax+ by")/("ax - by") = ("cx + dy")/("cx - dy")`
` => ("ax+ by")/("cx + dy") = ("ax - by")/("cx - dy")`
Hence, ax + by : cx + dy = ax - by : cx - dy
APPEARS IN
संबंधित प्रश्न
If `(5x + 6y)/(5u + 6v) = (5x - 6y)/(5u - 6v)`; then prove that x : y = u : v.
If `a = (4sqrt6)/(sqrt2 + sqrt3)`, find the value of `(a + 2sqrt2)/(a - 2sqrt2) + (a + 2sqrt3)/(a - 2sqrt3)`.
If 7x – 15y = 4x + y, find the value of x : y. Hence, use componendo and dividend to find the values of:
`(3x^2 + 2y^2)/(3x^2 - 2y^2)`
If `p/q = r/s`, prove that `(2p + 3q)/(2p - 3q) = (2r + 3s)/(2r - 3s)`.
If a : b : : c : d, prove that `(2a +5b)/(2a - 5b) = (2c + 5d)/(2c - 5d)`
If (pa + qb) : (pc + qd) :: (pa – qb) : (pc – qd) prove that a : b : : c : d
If (11a² + 13b²) (11c² – 13d²) = (11a² – 13b²)(11c² + 13d²), prove that a : b :: c : d.
Find x from the following equations : `(sqrt(a + x) + sqrt(a - x))/(sqrt(a + x) - sqrt(a - x)) = c/d`
Using the properties of proportion, solve the following equation for x; given `(x^3 + 3x)/(3x^2 + 1) = (341)/(91)`
If x = y, the value of (3x + y) : (5x – 3y) is ______.