Advertisements
Advertisements
प्रश्न
Find x from the following equations : `(sqrt(a + x) + sqrt(a - x))/(sqrt(a + x) - sqrt(a - x)) = c/d`
उत्तर
`(sqrt(a + x) + sqrt(a - x))/(sqrt(a + x) - sqrt(a - x)) = c/d`
Applying componendo and dividendo,
`(sqrt(a + x) + sqrt(a - x) + sqrt(a + x) - sqrt(a - x))/(sqrt(a+ x) + sqrt(a - x) - sqrt(a + x) + sqrt(a - x)) = (c + d)/(c - d)`
⇒ `(2sqrt(a + x))/(2sqrt(a - x)) = (c + d)/(c - d)`
⇒ `sqrt(a + x)/(sqrt(a - x)) = (c + d)/(c - d)`
Squaring both sides
`(a + x)/(a - x) - (c + d)^2/(c - d)^2`
Again applying componendo and dividendo
`(a + x + a - x)/(a + x - a + x) = ((c + d)^2 + (c - d)^2)/((c + d)^2 - (c - d)^2`
⇒ `(2a)/(2x) = (2(c^2 + d^2))/(4cd)`
⇒ `a/x = (c^2 + d^2)/(2cd)`
⇒ x(c2 + d2) = 2acd
⇒ x = `(2acd)/(c^2 + d^2)`.
APPEARS IN
संबंधित प्रश्न
If (a + b + c + d) (a – b – c + d) = (a + b – c – d) (a – b + c – d), prove that a : b = c : d.
Using componendo and dividendo, find the value of x:
`(sqrt(3x + 4) + sqrt(3x - 5))/(sqrt(3x + 4) - sqrt(3x - 5)) = 9`
If (7m +8n)(7p - 8q) = (7m - 8n)(7p + 8q), then prove that m: n = p: q
If a : b =c : d, then prove that `("a"^2 + "c"^2)/("b"^2 + "d"^2) = ("ac")/("bc")`
If y = `(sqrt(a + 3b) + sqrt(a - 3b))/(sqrt(a + 3b) - sqrt(a - 3b))`, show that 3by2 - 2ay + 3b = 0.
If `(5x + 7y)/(5u + 7v) = (5x - 7y)/(5u - 7v)`, show that `x/y = u/v`
If (4a + 5b) (4c – 5d) = (4a – 5d) (4c + 5d), prove that a, b, c, d are in proporton.
If (ma + nb): b :: (mc + nd) : d, prove that a, b, c, d are in proportion.
Find x from the following equations : `(sqrt(1 + x) + sqrt(1 - x))/(sqrt(1 + x) - sqrt(1 - x)) = a/b`
If x = `"pab"/(a + b)`, provee that `(x + pa)/(x - pa) - (x + pb)/(x - pb) = (2(a^2 - b^2))/(ab)`