Advertisements
Advertisements
प्रश्न
If `(5x + 7y)/(5u + 7v) = (5x - 7y)/(5u - 7v)`, show that `x/y = u/v`
उत्तर
`(5x + 7y)/(5u + 7v) = (5x - 7y)/(5u - 7v)`
Applying alternendo `(5x + 7y)/(5u + 7v) = (5x - 7y)/(5u - 7v)`
Applying componendo and dividendo
`(5x + 7y + 5x - 7y)/(5x + 7y - 5x + 7y) = (5u + 7v + 5u - 7v)/(5u + 7u - 5u + 7v)`
⇒ `(10x)/(14y) = (10u)/(14v)`
⇒ `x/y = u/v`
Hence proved. ...`("Dividing by" = 10/14)`
APPEARS IN
संबंधित प्रश्न
If `(a - 2b - 3c + 4d)/(a + 2b - 3c - 4d) = (a - 2b + 3c - 4d)/(a + 2b + 3c + 4d)`, show that: 2ad = 3bc.
If (4a + 9b)(4c – 9d) = (4a – 9b)(4c + 9d), prove that: a : b = c : d.
If a : b : : c : d, then prove that
(ax+ by): (cx + dy)=(ax - by) : (cx - dy)
If a : b = c : d , then prove that `("a"^2 + "ab" +
"b"^2)/("a"^2 - "ab" + "b"^2) = ("c"^2 + "cd"+ "d"^2)/("c"^2 - "cd" + "d"^2)`
If a : b = c : d, show that (2a - 7b) (2c + 7d) = (2c - 7d) (2a + 7b).
If x = `(4sqrt(6))/(sqrt(2) + sqrt(3)` find the value of `(x + 2sqrt(2))/(x - 2sqrt(2)) + (x + 2sqrt(3))/(x - 2sqrt(3)`
Solve `(1 + x + x^2)/(1 - x + x^2) = (62(1 +x))/(63(1 + x)`
Using Componendo and Dividendo solve for x:
`(sqrt(2x + 2) + sqrt(2x - 1))/(sqrt(2x + 2) - sqrt(2x - 1))` = 3
`(x + y)/z = (y + z)/x = (z + x)/y` is equal to ______.
If `x/(a + b - c) = y/(b + c - a) = z/(c + a - b) = 5` and a + b + c = 7; the value of x + y + z is ______.