Advertisements
Advertisements
प्रश्न
If a : b = c : d, show that (2a - 7b) (2c + 7d) = (2c - 7d) (2a + 7b).
उत्तर
We have
a: b = c : d
`a/b = c/d`
⇒ `(2a)/(7b) = (2c)/(7d) ...["Multiplying both side" 2/7]`
`["Using componendo and dividendo"]`
`(2a + 7b)/(2a - 7b) = (2c + 7d)/(2c - 7d)` ...[By cross multiplication]
⇒ (2a - 7b) (2c + 7d) = (2a + 7b) (2c - 7d).
Hence proved.
APPEARS IN
संबंधित प्रश्न
If (a + b + c + d) (a – b – c + d) = (a + b – c – d) (a – b + c – d), prove that a : b = c : d.
If `(a - 2b - 3c + 4d)/(a + 2b - 3c - 4d) = (a - 2b + 3c - 4d)/(a + 2b + 3c + 4d)`, show that: 2ad = 3bc.
If a : b =c : d, then prove that `("a"^2 + "c"^2)/("b"^2 + "d"^2) = ("ac")/("bc")`
Find x, if `16((a - x)/(a + x))^3 = (a + x)/(a - x)`.
If y = `(sqrt(a + 3b) + sqrt(a - 3b))/(sqrt(a + 3b) - sqrt(a - 3b))`, show that 3by2 - 2ay + 3b = 0.
If a : b : : c : d, prove that `(2a +5b)/(2a - 5b) = (2c + 5d)/(2c - 5d)`
Give `(x^3 + 12x)/(6x^2 + 8) = (y^3 + 27y)/(9y^2 + 27)` Using componendo and dividendo find x : y.
If (3x² + 2y²) : (3x² – 2y²) = 11 : 9, find the value of `(3x^4 + 5y^4)/(3x^4 - 5y^4)`
If x = `(2mab)/(a + b)`, find the value of `(x + ma)/(x - ma) + (x + mb)/(x - mb)`
If (m + n) : (n – m) = 5 : 2 ; m : n is ______.