Advertisements
Advertisements
प्रश्न
If y = `(sqrt(a + 3b) + sqrt(a - 3b))/(sqrt(a + 3b) - sqrt(a - 3b))`, show that 3by2 - 2ay + 3b = 0.
उत्तर
We have
`y/(1) = (sqrt(a + 3b) + sqrt(a - 3b))/(sqrt(a + 3b) - sqrt(a - 3b))`
Applying componendo and dividendo
`(y + 1)/(y - 1) = (sqrt(a + 3b) + sqrt(a - 3b) + sqrt(a + 3b) - sqrt(a - 3b))/(sqrt(a + 3b) + sqrt(a - 3b) - sqrt(a + 3b) + sqrt(a - 3b))`
`(y + 1)/(y - 1) = (2sqrt(a + 3b))/(2sqrt(a - 3b)`
Squaring both side
`((y + 1)^2)/((y - 1)^2) = (a + 3b)/(a - 3b)`
⇒ `(y^2 + 1 + 2y)/(y^2 + 1 - 2y) = (a + 3b)/(a - 3b)`
Again applying componendo and dividendo
⇒ `(y^2 + 1 + 2y + y^2 + 1 - 2y)/(y^2 + 1 + 2y - y62 - 1 + 2y) = (a + 3b + a - 3b)/(a + 3b - a + 3b)`
⇒ `(2(y^2 + 1))/(4y) = (2a)/(6b)`
⇒ 3by2 + 3b = 2ay
⇒ 3by2 - 2ay + 3 = 0.
Hence proved.
APPEARS IN
संबंधित प्रश्न
If `x = (2ab)/(a + b)`, find the value of `(x + a)/(x - a) + (x +b)/(x - b)`.
Show, that a, b, c, d are in proportion if:
(6a + 7b) : (6c + 7d) : : (6a - 7b) : (6c - 7d)
Find the value of
`(x + sqrt(3))/(x - sqrt(3)) + (x + sqrt(2))/(x - sqrt(2)), if x = (2sqrt(6))/(sqrt(3) + sqrt(2)`.
If `a/b = c/d,` show that (9a + 13b) (9c - 13d) = (9c + 13b) (9a - 13d).
If a : b : : c : d, prove that (2a + 3b)(2c – 3d) = (2a – 3b)(2c + 3d)
If (11a² + 13b²) (11c² – 13d²) = (11a² – 13b²)(11c² + 13d²), prove that a : b :: c : d.
If x = `(8ab)/"a + b"` find the value of `(x + 4a)/(x - 4a) + (x + 4b)/(x - 4b)`
Solve for `x : 16((a - x)/(a + x))^3 = (a + x)/(a - x)`
`(x + y)/z = (y + z)/x = (z + x)/y` is equal to ______.
If (m + n) : (n – m) = 5 : 2 ; m : n is ______.