Advertisements
Advertisements
Question
If y = `(sqrt(a + 3b) + sqrt(a - 3b))/(sqrt(a + 3b) - sqrt(a - 3b))`, show that 3by2 - 2ay + 3b = 0.
Solution
We have
`y/(1) = (sqrt(a + 3b) + sqrt(a - 3b))/(sqrt(a + 3b) - sqrt(a - 3b))`
Applying componendo and dividendo
`(y + 1)/(y - 1) = (sqrt(a + 3b) + sqrt(a - 3b) + sqrt(a + 3b) - sqrt(a - 3b))/(sqrt(a + 3b) + sqrt(a - 3b) - sqrt(a + 3b) + sqrt(a - 3b))`
`(y + 1)/(y - 1) = (2sqrt(a + 3b))/(2sqrt(a - 3b)`
Squaring both side
`((y + 1)^2)/((y - 1)^2) = (a + 3b)/(a - 3b)`
⇒ `(y^2 + 1 + 2y)/(y^2 + 1 - 2y) = (a + 3b)/(a - 3b)`
Again applying componendo and dividendo
⇒ `(y^2 + 1 + 2y + y^2 + 1 - 2y)/(y^2 + 1 + 2y - y62 - 1 + 2y) = (a + 3b + a - 3b)/(a + 3b - a + 3b)`
⇒ `(2(y^2 + 1))/(4y) = (2a)/(6b)`
⇒ 3by2 + 3b = 2ay
⇒ 3by2 - 2ay + 3 = 0.
Hence proved.
APPEARS IN
RELATED QUESTIONS
Given, `a/b = c/d`, prove that: `(3a - 5b)/(3a + 5b) = (3c - 5d)/(3c + 5d)`
If `a = (4sqrt6)/(sqrt2 + sqrt3)`, find the value of `(a + 2sqrt2)/(a - 2sqrt2) + (a + 2sqrt3)/(a - 2sqrt3)`.
If 7x – 15y = 4x + y, find the value of x : y. Hence, use componendo and dividendo to find the values of:
`(9x + 5y)/(9x - 5y)`
If a : b =c : d, then prove that `("a"^2 + "c"^2)/("b"^2 + "d"^2) = ("ac")/("bc")`
Solve for x : `(1 - px)/(1 + px) = sqrt((1 + qx)/(1 - qx)`
If a : b : : c : d, prove that `(5a + 11b)/(5c + 11d) = (5a - 11b)/(5c - 11d)`
Solve `(1 + x + x^2)/(1 - x + x^2) = (62(1 +x))/(63(1 + x)`
Using the properties of proportion, solve the following equation for x; given `(x^3 + 3x)/(3x^2 + 1) = (341)/(91)`
If x = `(root(3)(a + 1) + root(3)(a - 1))/(root(3)(a + 1) - root(3)(a - 1)`,prove that :
x³ – 3ax² + 3x – a = 0
`(x + y)/z = (y + z)/x = (z + x)/y` is equal to ______.