Advertisements
Advertisements
Question
Solve for x : `(1 - px)/(1 + px) = sqrt((1 + qx)/(1 - qx)`
Solution
`(1 - px)/(1 + px) = sqrt((1 - qx)/(1 + qx)) ..."(Squaring both sides")`
`((1 - px)/(1 + px))^2 = (1 - qx)/(1 + qx)`
⇒ `(1 +p^2x^2 - 2px)/(1 + p^2x^2 + 2px) = (1 - qx)/(1 + qx)`
Applying componendo and dividendo
`(1 + p^2x^2 - 2px + 1 + p^2x^2 + 2px)/(1 + p^2x^2 - 2px - 1 - p^2x^2 - 2px) = (1 - qx + 1 + qx)/(1 - qx - 1 - qx)`
⇒ `(2(1 + p^2x^2))/(2(-2px)) = (2)/(-2px)`
⇒ `(1 + p^2x^2)/(2px) = (1)/(qx)`
⇒ qx (1 + p2x2) = 2px
⇒ x(p2qx2 - 2p + q) = 0
Either x = 0
or
p2qx2 = 2p - q
x2 = `(2p - q)/(p^2q)`
x = 0 or x = ±`(1)/p sqrt((2p -q)/q`.
APPEARS IN
RELATED QUESTIONS
If a : b =c : d, then prove that `("a"^2 + "c"^2)/("b"^2 + "d"^2) = ("ac")/("bc")`
If y = `(sqrt(a + 3b) + sqrt(a - 3b))/(sqrt(a + 3b) - sqrt(a - 3b))`, show that 3by2 - 2ay + 3b = 0.
If y = `((p + 1)^(1/3) + (p - 1)^(1/3))/((p + 1)^(1/3) - (p - 1)^(1/3)` find that y3 - 3py2 + 3y - p = 0.
If a : b = c : d, show that (2a - 7b) (2c + 7d) = (2c - 7d) (2a + 7b).
If a : b : : c : d, prove that (2a + 3b)(2c – 3d) = (2a – 3b)(2c + 3d)
If `(5x + 7y)/(5u + 7v) = (5x - 7y)/(5u - 7v)`, show that `x/y = u/v`
If (a + 3b + 2c + 6d) (a – 3b – 2c + 6d) = (a + 3b – 2c – 6d) (a – 3b + 2c – 6d), prove that a : b :: c : d.
If x = `(8ab)/"a + b"` find the value of `(x + 4a)/(x - 4a) + (x + 4b)/(x - 4b)`
Find x from the following equations : `(sqrt(x + 4) + sqrt(x - 10))/(sqrt(x + 4) - sqrt(x - 10)) = (5)/(2)`
Using the properties of proportion, solve the following equation for x; given `(x^3 + 3x)/(3x^2 + 1) = (341)/(91)`