Advertisements
Advertisements
Question
If y = `((p + 1)^(1/3) + (p - 1)^(1/3))/((p + 1)^(1/3) - (p - 1)^(1/3)` find that y3 - 3py2 + 3y - p = 0.
Solution
We have
`y/(1) = ((p + 1)^(1/3) + (p - 1)^(1/3))/((p + 1)^(1/3) - (p - 1)^(1/3)`
Applying componendo and dividendo
`(y + 1)/(y - 1) = ((p + 1)^(1/3) + (p - 1)^(1/3) + (p + 1)^(1/3) - (p - 1)^(1/3))/((p + 1)^(1/3) + (p - 1)^(1/3) - (p + 1)^(1/3) + (p - 1)^(1 /3)`
⇒ `(y + 1)/(y - 1) = (2(p + 1)^(1/3))/(2(p - 1)^(1/3))`
Cubing both side
`((y + 1)^3)/((y - 1)^3) = (p + 1)/(p - 1)`
⇒ `(y^3 + 1 + 3y^2 + 3y)/(y^3 - 1 - 3y^2 + 3y) = (p + 1)/(p - 1)`
Again applying componendo and dividendo
⇒ `(y^3 + 1 + 3y^2 + 3y + y^3 - 1 - 3y^2 + 3y)/(y^3 + 1 + 3y^2 + 3y - y^3 + 1 3y^2 - 3y)`
= `(p + 1 + p - 1)/(p + 1 - p + 1)`
⇒ `(2y^3 + 6y)/(6y^2 + 2) = (2p)/(2)`
⇒ `(2(y^3 + 3y))/(2(3y^2 + 1)) = p`
⇒ y3 + 3y = 3py2 + p
⇒ y3 - 3py2 + 3y - p = 0.
Hence proved.
APPEARS IN
RELATED QUESTIONS
If a : b = c : d, prove that: (9a + 13b)(9c – 13d) = (9c + 13d)(9a – 13b).
If `a = (4sqrt6)/(sqrt2 + sqrt3)`, find the value of `(a + 2sqrt2)/(a - 2sqrt2) + (a + 2sqrt3)/(a - 2sqrt3)`.
If a : b =c : d, then prove that `("a"^2 + "c"^2)/("b"^2 + "d"^2) = ("ac")/("bc")`
If a : b :: c : d :: e : f, then prove that `("ae" + "bf")/("ae" - "bf")` = `("ce" + "df")/("ce" - "df")`
If a : b : : c : d, prove that (la + mb) : (lc + mb) :: (la – mb) : (lc – mb)
Find x from the following equations : `(sqrt(x + 4) + sqrt(x - 10))/(sqrt(x + 4) - sqrt(x - 10)) = (5)/(2)`
Find x from the following equations : `(sqrt(a + x) + sqrt(a - x))/(sqrt(a + x) - sqrt(a - x)) = c/d`
Given that `(a^3 + 3ab^2)/(b^3 + 3a^2b) = (63)/(62)`. Using componendo and dividendo find a: b.
If `(by + cz)/(b^2 + c^2) = (cz + ax)/(c^2 + a^2) = (ax + by)/(a^2 + b^2)`, prove that each of these ratio is equal to `x/a = y/b = z/c`
If x = y, the value of (3x + y) : (5x – 3y) is ______.