English

If Y = ( P + 1 ) 1 3 + ( P − 1 ) 1 3 ( P + 1 ) 1 3 − ( P − 1 ) 1 3 Find that Y3 - 3py2 + 3y - P = 0. - Mathematics

Advertisements
Advertisements

Question

If y = `((p + 1)^(1/3) + (p - 1)^(1/3))/((p + 1)^(1/3) - (p - 1)^(1/3)` find that y3 - 3py2 + 3y - p = 0.

Sum

Solution

We have
`y/(1) = ((p + 1)^(1/3) + (p - 1)^(1/3))/((p + 1)^(1/3) - (p - 1)^(1/3)`
Applying componendo and dividendo
`(y + 1)/(y - 1) = ((p + 1)^(1/3) + (p - 1)^(1/3) + (p + 1)^(1/3) - (p - 1)^(1/3))/((p + 1)^(1/3) + (p - 1)^(1/3) - (p + 1)^(1/3) + (p - 1)^(1 /3)`
⇒ `(y + 1)/(y - 1) = (2(p + 1)^(1/3))/(2(p - 1)^(1/3))`
Cubing both side
`((y + 1)^3)/((y - 1)^3) = (p + 1)/(p - 1)`
⇒ `(y^3 + 1 + 3y^2 + 3y)/(y^3 - 1 - 3y^2 + 3y) = (p + 1)/(p - 1)`
Again applying componendo and dividendo
⇒ `(y^3 + 1 + 3y^2 + 3y + y^3 - 1 - 3y^2 + 3y)/(y^3 + 1 + 3y^2 + 3y - y^3 + 1 3y^2 - 3y)`
= `(p + 1 + p - 1)/(p + 1 - p + 1)`
⇒ `(2y^3 + 6y)/(6y^2 + 2) = (2p)/(2)`
⇒ `(2(y^3 + 3y))/(2(3y^2 + 1)) = p`
⇒ y3 + 3y = 3py2 + p
⇒ y3 - 3py2 + 3y - p = 0.
Hence proved.

shaalaa.com
  Is there an error in this question or solution?
Chapter 8: Ratio and Proportion - Exercise 2

APPEARS IN

ICSE Mathematics [English] Class 10
Chapter 8 Ratio and Proportion
Exercise 2 | Q 10

Video TutorialsVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×