English

If A:B :: C:D :: E:F, Then Prove that (Ae + Bf)/(Ae - Bf) = (Ce + Df)/(Ce - Df) - Mathematics

Advertisements
Advertisements

Question

If a : b :: c : d :: e : f, then prove that `("ae" + "bf")/("ae" - "bf")` = `("ce"  + "df")/("ce"  - "df")`

Sum

Solution

`"a"/"b" = "c"/"d" = "e"/"f"`

`"a"/"b" xx "e"/"f" = "c"/"d" xx "e"/"f"`

`=> ("ae")/("bf") = "ce"/"df"`

Applying componendo and dividendo 

`("ae + bf")/("ae - bf") = ("ce + df")/("ce - df")`

Hence , proved.

shaalaa.com
  Is there an error in this question or solution?
Chapter 9: Ratio and Proportion - Exercise 9.3

APPEARS IN

Frank Mathematics - Part 2 [English] Class 10 ICSE
Chapter 9 Ratio and Proportion
Exercise 9.3 | Q 6

Video TutorialsVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×