Advertisements
Advertisements
Question
If a : b = c : d , then prove that `("a"^2 + "ab" +
"b"^2)/("a"^2 - "ab" + "b"^2) = ("c"^2 + "cd"+ "d"^2)/("c"^2 - "cd" + "d"^2)`
Solution
`"a"/"b" = "c"/"d" => "a" = "bc"/"d"`
LHS
`("a"^2 + "ab" + "b"^2)/("a"^2 - "ab" + "b"^2)`
`= (("bc"/"d")^2 + ("bc"/"d")"b" + "b"^2)/(("bc"/"d")^2 - ("bc"/"d")"b" + "b"^2)`
`= ("b"^2"c"^2 + "b"^2"cd" + "d"^2"b"^2)/("b"^2"c"^2 - "b"^2 "cd" + "d"^2"b"^2)`
`= ("b"^2("c"^2 + "cd" + "d"))/("b"^2("c"^2 - "cd" + "d"^2)) = ("c"^2 + "cd" + "d"^2)/("c"^2 - "cd" + "d"^2)` = RHS
LHS = RHS
Hence , proved.
APPEARS IN
RELATED QUESTIONS
Given `(x^3 + 12x)/(6x^2 + 8) = (y^3 + 27y)/(9y^2 + 27)` using componendo and divendo find x : y
If a : b : : c : d, then prove that
(ax+ by): (cx + dy)=(ax - by) : (cx - dy)
If a : b :: c : d :: e : f, then prove that `("ae" + "bf")/("ae" - "bf")` = `("ce" + "df")/("ce" - "df")`
Given that `(a^3 + 3ab^2)/(b^2 + 3a^2b) = (63)/(62)`.
Using Componendo and Dividendo find a : b.
If `p/q = r/s`, prove that `(2p + 3q)/(2p - 3q) = (2r + 3s)/(2r - 3s)`.
If (a + 3b + 2c + 6d) (a – 3b – 2c + 6d) = (a + 3b – 2c – 6d) (a – 3b + 2c – 6d), prove that a : b :: c : d.
If x = `(4sqrt(6))/(sqrt(2) + sqrt(3)` find the value of `(x + 2sqrt(2))/(x - 2sqrt(2)) + (x + 2sqrt(3))/(x - 2sqrt(3)`
Solve x : `(sqrt(36x + 1) + 6sqrt(x))/(sqrt(36x + 1) -6sqrt(x))` = 9
If (3x² + 2y²) : (3x² – 2y²) = 11 : 9, find the value of `(3x^4 + 5y^4)/(3x^4 - 5y^4)`
If x = `(root(3)(a + 1) + root(3)(a - 1))/(root(3)(a + 1) - root(3)(a - 1)`,prove that :
x³ – 3ax² + 3x – a = 0