Advertisements
Advertisements
Question
If x = `(root(3)(a + 1) + root(3)(a - 1))/(root(3)(a + 1) - root(3)(a - 1)`,prove that :
x³ – 3ax² + 3x – a = 0
Solution
x = `(root(3)(a + 1) + root(3)(a - 1))/(root(3)(a + 1) - root(3)(a - 1)`
Applying componendo and dividendo,
`(x + 1)/(x - 1) = (root(3)(a + 1) + root(3)(a - 1) + root(3)(a + 1) - root(3)(a - 1))/(root(3)(a + 1) + root(3)(a - 1) - root(3)(a + 1) + root(3)(a - 1)`
`(x + 1)/(x - 1) = (2root(3)(a + 1))/(2root(3)(a - 1)`
⇒ `(x + 1)/(x - 1) = (root(3)(a + 1))/(root(3)(a - 1)`
Cubing both sides
`((x + 1)^3)/(x - 1)^3 = (a + 1)/(a - 1)`
Again apply onendo and dividendo,
`((x + 1)^2 + (x - 1)^3)/((x + 1)^3 - (x - 1)^3) = (a + 1 + a - 1)/(a + 1 - a + 1)`
⇒ `(2(x^3 + 3x))/(2(3x^2 + 1)) = (2a)/(2)`
⇒ `(x^3 + 3x)/(3x^2 + 1) = a/(1)`
⇒ x3 + 3x = 3ax2 + a
⇒ x3 – 3ax2 + 3x – a = 0
Hence proved.
APPEARS IN
RELATED QUESTIONS
if x = `(sqrt(a + 1) + sqrt(a-1))/(sqrt(a + 1) - sqrt(a - 1))` using properties of proportion show that `x^2 - 2ax + 1 = 0`
If a : b = c : d, prove that: 5a + 7b : 5a – 7b = 5c + 7d : 5c – 7d.
If (7a + 8b)(7c – 8d) = (7a – 8b)(7c + 8d); prove that a : b = c : d.
If (7m +8n)(7p - 8q) = (7m - 8n)(7p + 8q), then prove that m: n = p: q
If a : b = c : d, show that (2a - 7b) (2c + 7d) = (2c - 7d) (2a + 7b).
If `(8a - 5b)/(8c - 5a) = (8a + 5b)/(8c + 5d)`, prove that `a/b = c/d`
Find x from the following equations : `(sqrt(a + x) + sqrt(a - x))/(sqrt(a + x) - sqrt(a - x)) = c/d`
Find x from the equation `(a+ x + sqrt(a^2 x^2))/(a + x - sqrt(a^2 - x^2)) = b/x`
If `(by + cz)/(b^2 + c^2) = (cz + ax)/(c^2 + a^2) = (ax + by)/(a^2 + b^2)`, prove that each of these ratio is equal to `x/a = y/b = z/c`
If `x/(a + b - c) = y/(b + c - a) = z/(c + a - b) = 5` and a + b + c = 7; the value of x + y + z is ______.