Advertisements
Advertisements
Question
Find x from the equation `(a+ x + sqrt(a^2 x^2))/(a + x - sqrt(a^2 - x^2)) = b/x`
Solution
`(a+ x + sqrt(a^2 x^2))/(a + x - sqrt(a^2 - x^2)) = b/x`
Applying componendo and dividendo,
`(a + x + sqrt(a^2 - x^2) + a + x - sqrt(a^2 - x^2))/(a + x + sqrt(a^2 - x^2) - a - x + sqrt(a^2 - x^2)) = (b + x)/(b - x)`
⇒ `(2(a + x))/(2sqrt(a^2 - x^2)) = (b + x)/(b - x)`
⇒ `(a + x)/sqrt(a^2 - x^2) = (b + x)/(b - x)`
Squaring both sides,
`(a + x)^2/(a^2 - x^2) = (b + x)^2/(b - x)^2`
⇒ `(a + x)^2/((a + x)(a - x)) = (b + x)^2/(b - x)^2`
⇒ `(a + x)/(a - x) = (b + x)^2/(b - x)^2`
Again applying componendo and dividendo,
`(a + x + a - x)/(a + x - a + x)`
= `((b + x)^2 + (b - x)^2)/((b + x)^2 - (b - x)^2`
⇒ `(2a)/(2x) = (2(b^2 + x^2))/(4bx)`
⇒ `a/x = (b^2 + x^2)/(2bx)`
2abx = x(b2 + x2)
⇒ 2ab = b2 + x2
⇒ x2 = 2ab – b2
x = `sqrt(2ab - b^2)`.
APPEARS IN
RELATED QUESTIONS
Given `(x^3 + 12x)/(6x^2 + 8) = (y^3+ 27y)/(9y^2 + 27)`. Using componendo and dividendo find x : y.
If p, q, r ands are In continued proportion, then prove that (p3+q3+r3) ( q3+r3+s3) : : P : s
If y = `((p + 1)^(1/3) + (p - 1)^(1/3))/((p + 1)^(1/3) - (p - 1)^(1/3)` find that y3 - 3py2 + 3y - p = 0.
If `(5x + 7y)/(5u + 7v) = (5x - 7y)/(5u - 7v)`, show that `x/y = u/v`
If (ma + nb): b :: (mc + nd) : d, prove that a, b, c, d are in proportion.
If x = `(2a + b)/(a + b)` find the value of `(x + a)/(x - a) + (x + b)/(x - b)`
Solve `(1 + x + x^2)/(1 - x + x^2) = (62(1 +x))/(63(1 + x)`
If x = `"pab"/(a + b)`, provee that `(x + pa)/(x - pa) - (x + pb)/(x - pb) = (2(a^2 - b^2))/(ab)`
If x = `(root(3)(a + 1) + root(3)(a - 1))/(root(3)(a + 1) - root(3)(a - 1)`,prove that :
x³ – 3ax² + 3x – a = 0
If (m + n) : (n – m) = 5 : 2 ; m : n is ______.