Advertisements
Advertisements
प्रश्न
Find x from the equation `(a+ x + sqrt(a^2 x^2))/(a + x - sqrt(a^2 - x^2)) = b/x`
उत्तर
`(a+ x + sqrt(a^2 x^2))/(a + x - sqrt(a^2 - x^2)) = b/x`
Applying componendo and dividendo,
`(a + x + sqrt(a^2 - x^2) + a + x - sqrt(a^2 - x^2))/(a + x + sqrt(a^2 - x^2) - a - x + sqrt(a^2 - x^2)) = (b + x)/(b - x)`
⇒ `(2(a + x))/(2sqrt(a^2 - x^2)) = (b + x)/(b - x)`
⇒ `(a + x)/sqrt(a^2 - x^2) = (b + x)/(b - x)`
Squaring both sides,
`(a + x)^2/(a^2 - x^2) = (b + x)^2/(b - x)^2`
⇒ `(a + x)^2/((a + x)(a - x)) = (b + x)^2/(b - x)^2`
⇒ `(a + x)/(a - x) = (b + x)^2/(b - x)^2`
Again applying componendo and dividendo,
`(a + x + a - x)/(a + x - a + x)`
= `((b + x)^2 + (b - x)^2)/((b + x)^2 - (b - x)^2`
⇒ `(2a)/(2x) = (2(b^2 + x^2))/(4bx)`
⇒ `a/x = (b^2 + x^2)/(2bx)`
2abx = x(b2 + x2)
⇒ 2ab = b2 + x2
⇒ x2 = 2ab – b2
x = `sqrt(2ab - b^2)`.
APPEARS IN
संबंधित प्रश्न
If `x = (6ab)/(a + b)`, find the value of `(x + 3a)/(x - 3a) + (x + 3b)/(x - 3b)`.
If 7x – 15y = 4x + y, find the value of x : y. Hence, use componendo and dividend to find the values of:
`(3x^2 + 2y^2)/(3x^2 - 2y^2)`
Using componendo and dividendo, find the value of x:
`(sqrt(3x + 4) + sqrt(3x - 5))/(sqrt(3x + 4) - sqrt(3x - 5)) = 9`
If a : b =c : d, then prove that `("a"^2 + "c"^2)/("b"^2 + "d"^2) = ("ac")/("bc")`
If y = `((p + 1)^(1/3) + (p - 1)^(1/3))/((p + 1)^(1/3) - (p - 1)^(1/3)` find that y3 - 3py2 + 3y - p = 0.
Using componendo and idendo, find the value of x
`(sqrt(3x + 4) + sqrt(3x - 5))/(sqrt(3x + 4) - sqrt(3x - 5)` = 9
Given : x = `(sqrt(a^2 + b^2)+sqrt(a^2 - b^2))/(sqrt(a^2 + b^2)-sqrt(a^2 - b^2))`
Use componendo and dividendo to prove that `b^2 = (2a^2x)/(x^2 + 1)`.
If a : b : : c : d, prove that `(5a + 11b)/(5c + 11d) = (5a - 11b)/(5c - 11d)`
Find x from the following equations : `(sqrt(1 + x) + sqrt(1 - x))/(sqrt(1 + x) - sqrt(1 - x)) = a/b`
Using Componendo and Dividendo solve for x:
`(sqrt(2x + 2) + sqrt(2x - 1))/(sqrt(2x + 2) - sqrt(2x - 1))` = 3