Advertisements
Advertisements
प्रश्न
Find x from the equation `(a+ x + sqrt(a^2 x^2))/(a + x - sqrt(a^2 - x^2)) = b/x`
उत्तर
`(a+ x + sqrt(a^2 x^2))/(a + x - sqrt(a^2 - x^2)) = b/x`
Applying componendo and dividendo,
`(a + x + sqrt(a^2 - x^2) + a + x - sqrt(a^2 - x^2))/(a + x + sqrt(a^2 - x^2) - a - x + sqrt(a^2 - x^2)) = (b + x)/(b - x)`
⇒ `(2(a + x))/(2sqrt(a^2 - x^2)) = (b + x)/(b - x)`
⇒ `(a + x)/sqrt(a^2 - x^2) = (b + x)/(b - x)`
Squaring both sides,
`(a + x)^2/(a^2 - x^2) = (b + x)^2/(b - x)^2`
⇒ `(a + x)^2/((a + x)(a - x)) = (b + x)^2/(b - x)^2`
⇒ `(a + x)/(a - x) = (b + x)^2/(b - x)^2`
Again applying componendo and dividendo,
`(a + x + a - x)/(a + x - a + x)`
= `((b + x)^2 + (b - x)^2)/((b + x)^2 - (b - x)^2`
⇒ `(2a)/(2x) = (2(b^2 + x^2))/(4bx)`
⇒ `a/x = (b^2 + x^2)/(2bx)`
2abx = x(b2 + x2)
⇒ 2ab = b2 + x2
⇒ x2 = 2ab – b2
x = `sqrt(2ab - b^2)`.
APPEARS IN
संबंधित प्रश्न
Given x = `(sqrt(a^2 + b^2) + sqrt(a^2 - b^2))/(sqrt(a^2 + b^2) - sqrt(a^2 - b^2))`
Use componendo and dividendo to prove that `b^2 = (2a^2x)/(x^3 + 1)`
If `(x^2 + y^2)/(x^2 - y^2) = 2 1/8`, find: `x/y`
If a : b =c : d, then prove that `("a"^2 + "c"^2)/("b"^2 + "d"^2) = ("ac")/("bc")`
If p, q, r ands are In continued proportion, then prove that (p3+q3+r3) ( q3+r3+s3) : : P : s
Find x, if `16((a - x)/(a + x))^3 = (a + x)/(a - x)`.
If `(3x + 5y)/(3x - 5y) = (7)/(3)`, find x : y.
If `p/q = r/s`, prove that `(2p + 3q)/(2p - 3q) = (2r + 3s)/(2r - 3s)`.
If a : b = c : d, show that (2a - 7b) (2c + 7d) = (2c - 7d) (2a + 7b).
If a : b : : c : d, prove that `(5a + 11b)/(5c + 11d) = (5a - 11b)/(5c - 11d)`
If `(x^2 - 4)/(x^2 + 4) = 3/5`, the value of x is ______.