Advertisements
Advertisements
प्रश्न
If x = `"pab"/(a + b)`, provee that `(x + pa)/(x - pa) - (x + pb)/(x - pb) = (2(a^2 - b^2))/(ab)`
उत्तर
x = `"pab"/(a + b)`
⇒ `x/(pa) + b/(a + b)`
Applying componendo and dividendo
`(x + pa)/(x - pa)`
= `(b + a + b)/(b - a - b)`
= `(a + 2b)/(-a)` ....(i)
Again, `x/(pb)`
= `a/(a + b)`
Applying componendo and dividendo,
`(x + pb)/(x - pb)`
= `(a + a + b)/(a - a - b)`
= `(2a + b)/(-b)` ....(ii)
L.H.S. = `(x + pa)/(x - pa) - (x + pb)/(x - pb)`
= `(a + 2b)/(-a) - (2a + b)/(-b)`
= `(a + 2b)/(-a) + (2a + b)/(b)`
= `(ab + 2b^2 2a^2 - ab)/(-ab)`
= `(2b^2 - 2a^2)/(-ab)`
= `(-2a^2 + 2b^2)/(-ab)`
= `(-2(a^2 - b^2))/(-ab)`
= `(2(a^2 - b^2))/(ab)`
= R.H.S.
APPEARS IN
संबंधित प्रश्न
Using componendo and dividendo, find the value of x
`(sqrt(3x + 4) + sqrt(3x -5))/(sqrt(3x + 4)-sqrt(3x - 5)) = 9`
If `(5x + 6y)/(5u + 6v) = (5x - 6y)/(5u - 6v)`; then prove that x : y = u : v.
If `x = (6ab)/(a + b)`, find the value of `(x + 3a)/(x - 3a) + (x + 3b)/(x - 3b)`.
Using the properties of proportion solve for x given `(x^4 + 1)/(2x^2) = 17/8`
If y = `((p + 1)^(1/3) + (p - 1)^(1/3))/((p + 1)^(1/3) - (p - 1)^(1/3)` find that y3 - 3py2 + 3y - p = 0.
If `p/q = r/s`, prove that `(2p + 3q)/(2p - 3q) = (2r + 3s)/(2r - 3s)`.
If a : b : : c : d, prove that `(2a +5b)/(2a - 5b) = (2c + 5d)/(2c - 5d)`
If a : b : : c : d, prove that (2a + 3b)(2c – 3d) = (2a – 3b)(2c + 3d)
Solve for `x : 16((a - x)/(a + x))^3 = (a + x)/(a - x)`
If (a + b) : (a – b) = 13 : 3 ; a : b is ______.