Advertisements
Advertisements
प्रश्न
If a : b : : c : d, prove that `(2a +5b)/(2a - 5b) = (2c + 5d)/(2c - 5d)`
उत्तर
a : b : : c : d
then `a/b = c/d`
⇒ `(2a)/(5b) = (2c)/(5d) ...("multiply by" 2/5)`
Applying componendo and dividendo,
`(2a + 5b)/(2a - 5b) = (2c + 5d)/(2c - 5d)`.
APPEARS IN
संबंधित प्रश्न
if x = `(sqrt(a + 1) + sqrt(a-1))/(sqrt(a + 1) - sqrt(a - 1))` using properties of proportion show that `x^2 - 2ax + 1 = 0`
If `(5x + 6y)/(5u + 6v) = (5x - 6y)/(5u - 6v)`; then prove that x : y = u : v.
If (a + b + c + d) (a – b – c + d) = (a + b – c – d) (a – b + c – d), prove that a : b = c : d.
Given x = `(sqrt(a^2 + b^2) + sqrt(a^2 - b^2))/(sqrt(a^2 + b^2) + sqrt(a^2 - b^2))`
Use componendo and dividendo to prove that b^2 = (2a^2x)/(x^2 + 1)
If `(x^2 + y^2)/(x^2 - y^2) = 2 1/8`, find: `x/y`
Show, that a, b, c, d are in proportion if:
(6a + 7b) : (6c + 7d) : : (6a - 7b) : (6c - 7d)
If `a/b = c/d,` show that (9a + 13b) (9c - 13d) = (9c + 13b) (9a - 13d).
if `(3a + 4b)/(3c + 4d) = (3a - 4b)/(3c - 4d)` Prove that `a/b = c/d`.
If `(5x + 7y)/(5u + 7v) = (5x - 7y)/(5u - 7v)`, show that `x/y = u/v`
If x = `(2a + b)/(a + b)` find the value of `(x + a)/(x - a) + (x + b)/(x - b)`